Question Description
A container of volume 1 m3 is divided into two equal parts by a partition. One part has an ideal gas at 300 K and the other part is vacuum. The whole system is thermally isolated from the surroundings. When the partition is removed, the gas expands to occupy the whole volume. Its temperature will now be ____ .Correct answer is '0'. Can you explain this answer? for Physics 2024 is part of Physics preparation. The Question and answers have been prepared
according to
the Physics exam syllabus. Information about A container of volume 1 m3 is divided into two equal parts by a partition. One part has an ideal gas at 300 K and the other part is vacuum. The whole system is thermally isolated from the surroundings. When the partition is removed, the gas expands to occupy the whole volume. Its temperature will now be ____ .Correct answer is '0'. Can you explain this answer? covers all topics & solutions for Physics 2024 Exam.
Find important definitions, questions, meanings, examples, exercises and tests below for A container of volume 1 m3 is divided into two equal parts by a partition. One part has an ideal gas at 300 K and the other part is vacuum. The whole system is thermally isolated from the surroundings. When the partition is removed, the gas expands to occupy the whole volume. Its temperature will now be ____ .Correct answer is '0'. Can you explain this answer?.
Solutions for A container of volume 1 m3 is divided into two equal parts by a partition. One part has an ideal gas at 300 K and the other part is vacuum. The whole system is thermally isolated from the surroundings. When the partition is removed, the gas expands to occupy the whole volume. Its temperature will now be ____ .Correct answer is '0'. Can you explain this answer? in English & in Hindi are available as part of our courses for Physics.
Download more important topics, notes, lectures and mock test series for Physics Exam by signing up for free.
Here you can find the meaning of A container of volume 1 m3 is divided into two equal parts by a partition. One part has an ideal gas at 300 K and the other part is vacuum. The whole system is thermally isolated from the surroundings. When the partition is removed, the gas expands to occupy the whole volume. Its temperature will now be ____ .Correct answer is '0'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of
A container of volume 1 m3 is divided into two equal parts by a partition. One part has an ideal gas at 300 K and the other part is vacuum. The whole system is thermally isolated from the surroundings. When the partition is removed, the gas expands to occupy the whole volume. Its temperature will now be ____ .Correct answer is '0'. Can you explain this answer?, a detailed solution for A container of volume 1 m3 is divided into two equal parts by a partition. One part has an ideal gas at 300 K and the other part is vacuum. The whole system is thermally isolated from the surroundings. When the partition is removed, the gas expands to occupy the whole volume. Its temperature will now be ____ .Correct answer is '0'. Can you explain this answer? has been provided alongside types of A container of volume 1 m3 is divided into two equal parts by a partition. One part has an ideal gas at 300 K and the other part is vacuum. The whole system is thermally isolated from the surroundings. When the partition is removed, the gas expands to occupy the whole volume. Its temperature will now be ____ .Correct answer is '0'. Can you explain this answer? theory, EduRev gives you an
ample number of questions to practice A container of volume 1 m3 is divided into two equal parts by a partition. One part has an ideal gas at 300 K and the other part is vacuum. The whole system is thermally isolated from the surroundings. When the partition is removed, the gas expands to occupy the whole volume. Its temperature will now be ____ .Correct answer is '0'. Can you explain this answer? tests, examples and also practice Physics tests.