- Introduction
The NPR formula is used to calculate the number of permutations of n objects taken r at a time, where order matters.
- The Formula
The formula for NPR is:
nPr = n(n-1)(n-2)...(n-r+1)
This can also be written as:
nPr = n!/(n-r)!
- Explanation of the Formula
The first factor in the formula, n, represents the number of objects being selected. The next factor, (n-1), represents the number of choices for the second object, since one object has already been selected. This pattern continues until r objects have been selected.
The formula can also be written as a fraction, where the numerator is n! (the factorial of n) and the denominator is (n-r)! (the factorial of n minus r). This represents the number of ways to arrange n objects in a specific order, taking r at a time.
- Number of Factors
The number of factors in the NPR formula is equal to r. This is because there are r factors in the formula, one for each object being selected. For example, if n=5 and r=3, the NPR formula would be:
5P3 = 5(4)(3) = 60
There are three factors in the formula (5, 4, and 3), which represents the three objects being selected.
- Conclusion
The NPR formula is a useful tool for calculating the number of permutations of n objects taken r at a time. The number of factors in the formula is equal to r, which represents the number of objects being selected.