CAT Exam  >  CAT Questions  >   Directions: Read the following passage and a... Start Learning for Free
Directions: Read the following passage and answer the questions that follow
To the superficial observer scientific truth is unassailable, the logic of science is infallible; and if scientific men sometimes make mistakes, it is because they have not understood the rules of the game. Mathematical truths are derived from a few self-evident propositions, by a chain of flawless reasonings; they are imposed not only on us, but on Nature itself. By them the Creator is fettered, as it were, and His choice is limited to a relatively small number of solutions. A few experiments, therefore, will be sufficient to enable us to determine what choice He has made. From each experiment a number of consequences will follow by a series of mathematical deductions, and in this way each of them will reveal to us a corner of the universe. This, to the minds of most people, and to students who are getting their first ideas of physics, is the origin of certainty in science. This is what they take to be the role of experiment and mathematics. And thus, too, it was understood a hundred years ago by many men of science who dreamed of constructing the world with the aid of the smallest possible amount of material borrowed from experiment.
But upon more mature reflection the position held by hypothesis was seen; it was recognised that it is as necessary to the experimenter as it is to the mathematician. And then the doubt arose if all these constructions are built on solid foundations. The conclusion was drawn that a breath would bring them to the ground. This sceptical attitude does not escape the charge of superficiality. To doubt everything or to believe everything are two equally convenient solutions; both dispense with the necessity of reflection.
Instead of a summary condemnation we should examine with the utmost care the rôle of hypothesis; we shall then recognise not only that it is necessary, but that in most cases it is legitimate. We shall also see that there are several kinds of hypotheses; that some are verifiable, and when once confirmed by experiment become truths of great fertility; that others may be useful to us in fixing our ideas; and finally, that others are hypotheses only in appearance, and reduce to definitions or to conventions in disguise. The latter are to be met with especially in mathematics and in the sciences to which it is applied. From them, indeed, the sciences derive their rigour; such conventions are the result of the unrestricted activity of the mind, which in this domain recognizes no obstacle. For here the mind may affirm because it lays down its own laws; but let us clearly understand that while these laws are imposed on science, which otherwise could not exist, they are not imposed on Nature. Are they then arbitrary? No; for if they were, they would not be fertile. Experience leaves us our freedom of choice, but it guides us by helping us to discern the most convenient path to follow. Our laws are therefore like those of an absolute monarch, who is wise and consults his council of state.
When the author of the passage says, “The conclusion was drawn that a breath would bring them to the ground”, he essentially refers to:
  • a)
    the fact that having a sceptical attitude can help in clarifying some hypothesis.
  • b)
    how one would be better at believing every hypothesis, and how these can ultimately lead to the right solutions.
  • c)
    how the sceptical approach adopted by many is detrimental to science and why it should be replaced with a positive one.
  • d)
    the potential of a sceptical attitude to blow away a hypothesis and contrast this with the actual need of deep reflection to arrive at the right conclusions.
Correct answer is option 'D'. Can you explain this answer?
Most Upvoted Answer
Directions: Read the following passage and answer the questions that ...
In order to identify the correct answer, we need to understand the situational context provided here. Refer to the following lines: And thus, too, it was understood a hundred years ago by many men of science who dreamed of constructing the world with the aid of the smallest possible amount of material borrowed from experiment. But upon more mature reflection the position held by hypothesis was seen; it was recognised that it is as necessary to the experimenter as it is to the mathematician. And then the doubt arose if all these constructions are built on solid foundations. The conclusion was drawn that a breath would bring them to the ground.This sceptical attitude does not escape the charge of superficiality. To doubt everything or to believe everything are two equally convenient solutions; both dispense with the necessity of reflection.
The scepticism being referred to in the passage is actually meant to highlight the two approaches being adopted in the passage. The author highlights, in the lines that follow the one given in the question, the need of the two approaches, and how one needs to reflect to arrive at the correct answer. The sceptical attitude, though has a role to play in dispelling incorrect notions, it needs to be accompanied with the right attitude to arrive at the final answer. This makes option 4 are best answer in the given case.
Attention CAT Students!
To make sure you are not studying endlessly, EduRev has designed CAT study material, with Structured Courses, Videos, & Test Series. Plus get personalized analysis, doubt solving and improvement plans to achieve a great score in CAT.
Explore Courses for CAT exam

Similar CAT Doubts

Directions: Read the following passage and answer the questions that followTo the superficial observer scientific truth is unassailable, the logic of science is infallible; and if scientific men sometimes make mistakes, it is because they have not understood the rules of the game. Mathematical truths are derived from a few self-evident propositions, by a chain of flawless reasonings; they are imposed not only on us, but on Nature itself. By them the Creator is fettered, as it were, and His choice is limited to a relatively small number of solutions. A few experiments, therefore, will be sufficient to enable us to determine what choice He has made. From each experiment a number of consequences will follow by a series of mathematical deductions, and in this way each of them will reveal to us a corner of the universe. This, to the minds of most people, and to students who are getting their first ideas of physics, is the origin of certainty in science. This is what they take to be the role of experiment and mathematics. And thus, too, it was understood a hundred years ago by many men of science who dreamed of constructing the world with the aid of the smallest possible amount of material borrowed from experiment.But upon more mature reflection the position held by hypothesis was seen; it was recognised that it is as necessary to the experimenter as it is to the mathematician. And then the doubt arose if all these constructions are built on solid foundations. The conclusion was drawn that a breath would bring them to the ground. This sceptical attitude does not escape the charge of superficiality. To doubt everything or to believe everything are two equally convenient solutions; both dispense with the necessity of reflection.Instead of a summary condemnation we should examine with the utmost care the rôle of hypothesis; we shall then recognise not only that it is necessary, but that in most cases it is legitimate. We shall also see that there are several kinds of hypotheses; that some are verifiable, and when once confirmed by experiment become truths of great fertility; that others may be useful to us in fixing our ideas; and finally, that others are hypotheses only in appearance, and reduce to definitions or to conventions in disguise. The latter are to be met with especially in mathematics and in the sciences to which it is applied. From them, indeed, the sciences derive their rigour; such conventions are the result of the unrestricted activity of the mind, which in this domain recognizes no obstacle. For here the mind may affirm because it lays down its own laws; but let us clearly understand that while these laws are imposed on science, which otherwise could not exist, they are not imposed on Nature. Are they then arbitrary? No; for if they were, they would not be fertile. Experience leaves us our freedom of choice, but it guides us by helping us to discern the most convenient path to follow. Our laws are therefore like those of an absolute monarch, who is wise and consults his council of state.By comparing the laws laid down by our mind to those of an absolute monarch, the author is trying to

Directions: Read the following passage and answer the questions that followTo the superficial observer scientific truth is unassailable, the logic of science is infallible; and if scientific men sometimes make mistakes, it is because they have not understood the rules of the game. Mathematical truths are derived from a few self-evident propositions, by a chain of flawless reasonings; they are imposed not only on us, but on Nature itself. By them the Creator is fettered, as it were, and His choice is limited to a relatively small number of solutions. A few experiments, therefore, will be sufficient to enable us to determine what choice He has made. From each experiment a number of consequences will follow by a series of mathematical deductions, and in this way each of them will reveal to us a corner of the universe. This, to the minds of most people, and to students who are getting their first ideas of physics, is the origin of certainty in science. This is what they take to be the role of experiment and mathematics. And thus, too, it was understood a hundred years ago by many men of science who dreamed of constructing the world with the aid of the smallest possible amount of material borrowed from experiment.But upon more mature reflection the position held by hypothesis was seen; it was recognised that it is as necessary to the experimenter as it is to the mathematician. And then the doubt arose if all these constructions are built on solid foundations. The conclusion was drawn that a breath would bring them to the ground. This sceptical attitude does not escape the charge of superficiality. To doubt everything or to believe everything are two equally convenient solutions; both dispense with the necessity of reflection.Instead of a summary condemnation we should examine with the utmost care the rôle of hypothesis; we shall then recognise not only that it is necessary, but that in most cases it is legitimate. We shall also see that there are several kinds of hypotheses; that some are verifiable, and when once confirmed by experiment become truths of great fertility; that others may be useful to us in fixing our ideas; and finally, that others are hypotheses only in appearance, and reduce to definitions or to conventions in disguise. The latter are to be met with especially in mathematics and in the sciences to which it is applied. From them, indeed, the sciences derive their rigour; such conventions are the result of the unrestricted activity of the mind, which in this domain recognizes no obstacle. For here the mind may affirm because it lays down its own laws; but let us clearly understand that while these laws are imposed on science, which otherwise could not exist, they are not imposed on Nature. Are they then arbitrary? No; for if they were, they would not be fertile. Experience leaves us our freedom of choice, but it guides us by helping us to discern the most convenient path to follow. Our laws are therefore like those of an absolute monarch, who is wise and consults his council of state.Which of the following would be the most appropriate conclusion?

Directions: Read the following passage and answer the questions that follow:To the superficial observer scientific truth is unassailable, the logic of science is infallible; and if scientific men sometimes make mistakes, it is because they have not understood the rules of the game. Mathematical truths are derived from a few self-evident propositions, by a chain of flawless reasonings; they are imposed not only on us, but on Nature itself. By them the Creator is fettered, as it were, and His choice is limited to a relatively small number of solutions. A few experiments, therefore, will be sufficient to enable us to determine what choice He has made. From each experiment a number of consequences will follow by a series of mathematical deductions, and in this way each of them will reveal to us a corner of the universe. This, to the minds of most people, and to students who are getting their first ideas of physics, is the origin of certainty in science. This is what they take to be the role of experiment and mathematics. And thus, too, it was understood a hundred years ago by many men of science who dreamed of constructing the world with the aid of the smallest possible amount of material borrowed from experiment.But upon more mature reflection the position held by hypothesis was seen; it was recognised that it is as necessary to the experimenter as it is to the mathematician. And then the doubt arose if all these constructions are built on solid foundations. The conclusion was drawn that a breath would bring them to the ground. This sceptical attitude does not escape the charge of superficiality. To doubt everything or to believe everything are two equally convenient solutions; both dispense with the necessity of reflection.Instead of a summary condemnation we should examine with the utmost care the rôle of hypothesis; we shall then recognise not only that it is necessary, but that in most cases it is legitimate. We shall also see that there are several kinds of hypotheses; that some are verifiable, and when once confirmed by experiment become truths of great fertility; that others may be useful to us in fixing our ideas; and finally, that others are hypotheses only in appearance, and reduce to definitions or to conventions in disguise. The latter are to be met with especially in mathematics and in the sciences to which it is applied. From them, indeed, the sciences derive their rigour; such conventions are the result of the unrestricted activity of the mind, which in this domain recognizes no obstacle. For here the mind may affirm because it lays down its own laws; but let us clearly understand that while these laws are imposed on science, which otherwise could not exist, they are not imposed on Nature. Are they then arbitrary? No; for if they were, they would not be fertile. Experience leaves us our freedom of choice, but it guides us by helping us to discern the most convenient path to follow. Our laws are therefore like those of an absolute monarch, who is wise and consults his council of state.In the sentence, “By them the Creator is fettered, as it were, and His choice is limited to a relatively small number of solutions”, the “them” refers to

Answer the following question based on the information given below.Claude Elwood Shannon, a mathematician born in Gaylord, Michigan (U.S.) in 1916, is credited with two important contributions to information technology: the application of Boolean theory to electronic switching, thus laying the groundwork for the digital computer, and developing the new field called information theory. It is difficult to overstate the impact which Claude Shannon has had on the 20th century and the way we live and work in it, yet he remains practically unknown to the general public. Shannon spent the bulk of his career, a span of over 30 years from 1941 to 1972, at Bell Labs where he worked as a mathematician dedicated to research.While a graduate student at MIT in the late 1930s, Shannon worked for Vannevar Bush who was at that time building a mechanical computer, the Differential Analyser. Shannon had the insight to apply the two-valued Boolean logic to electrical circuits (which could be in either of two states - on or off). This syncretism of two hitherto distinct fields earned Shannon his MS in 1937 and his doctorate in 1940.Not content with laying the logical foundations of both the modern telephone switch and the digital computer, Shannon went on to invent the discipline of information theory and revolutionize the field of communications. He developed the concept of entropy in communication systems, the idea that information is based on uncertainty. This concept says that the more uncertainty in a communication channel, the more information that can be transmitted and vice versa. Shannon used mathematics to define the capacity of any communications channel to optimize the signal-to-noise ratio. He envisioned the possibility of error-free communications for telecommunications, the Internet, and satellite systems.A Mathematical Theory Of Communication , published in the Bell Systems Technical Journal in 1948, outlines the principles of his information theory. Information Theory also has important ramifications for the field of cryptography as explained in his 1949 paper Communication Theory of Secrecy Systems- in a nutshell, the more entropy a cryptographic system has, the harder the resulting encryption is to break.Shannon's varied retirement interests included inventing unicycles, motorized pogo sticks, and chess-playing robots as well as juggling - he developed an equation describing the relationship between the position of the balls and the action of the hands. Claude Shannon died on February 24, 2001.Q. What can be said about Shannon's thought as expressed in 1949 paper Communication Theory of Secrecy Systems?

Answer the following question based on the information given below.Claude Elwood Shannon, a mathematician born in Gaylord, Michigan (U.S.) in 1916, is credited with two important contributions to information technology: the application of Boolean theory to electronic switching, thus laying the groundwork for the digital computer, and developing the new field called information theory. It is difficult to overstate the impact which Claude Shannon has had on the 20th century and the way we live and work in it, yet he remains practically unknown to the general public. Shannon spent the bulk of his career, a span of over 30 years from 1941 to 1972, at Bell Labs where he worked as a mathematician dedicated to research.While a graduate student at MIT in the late 1930s, Shannon worked for Vannevar Bush who was at that time building a mechanical computer, the Differential Analyser. Shannon had the insight to apply the two-valued Boolean logic to electrical circuits (which could be in either of two states - on or off). This syncretism of two hitherto distinct fields earned Shannon his MS in 1937 and his doctorate in 1940.Not content with laying the logical foundations of both the modern telephone switch and the digital computer, Shannon went on to invent the discipline of information theory and revolutionize the field of communications. He developed the concept of entropy in communication systems, the idea that information is based on uncertainty. This concept says that the more uncertainty in a communication channel, the more information that can be transmitted and vice versa. Shannon used mathematics to define the capacity of any communications channel to optimize the signal-to-noise ratio. He envisioned the possibility of error-free communications for telecommunications, the Internet, and satellite systems.A Mathematical Theory Of Communication , published in the Bell Systems Technical Journal in 1948, outlines the principles of his information theory. Information Theory also has important ramifications for the field of cryptography as explained in his 1949 paper Communication Theory of Secrecy Systems- in a nutshell, the more entropy a cryptographic system has, the harder the resulting encryption is to break.Shannon's varied retirement interests included inventing unicycles, motorized pogo sticks, and chess-playing robots as well as juggling - he developed an equation describing the relationship between the position of the balls and the action of the hands. Claude Shannon died on February 24, 2001.Q. What is the concept of entropy described in the passage?

Top Courses for CAT

Directions: Read the following passage and answer the questions that followTo the superficial observer scientific truth is unassailable, the logic of science is infallible; and if scientific men sometimes make mistakes, it is because they have not understood the rules of the game. Mathematical truths are derived from a few self-evident propositions, by a chain of flawless reasonings; they are imposed not only on us, but on Nature itself. By them the Creator is fettered, as it were, and His choice is limited to a relatively small number of solutions. A few experiments, therefore, will be sufficient to enable us to determine what choice He has made. From each experiment a number of consequences will follow by a series of mathematical deductions, and in this way each of them will reveal to us a corner of the universe. This, to the minds of most people, and to students who are getting their first ideas of physics, is the origin of certainty in science. This is what they take to be the role of experiment and mathematics. And thus, too, it was understood a hundred years ago by many men of science who dreamed of constructing the world with the aid of the smallest possible amount of material borrowed from experiment.But upon more mature reflection the position held by hypothesis was seen; it was recognised that it is as necessary to the experimenter as it is to the mathematician. And then the doubt arose if all these constructions are built on solid foundations. The conclusion was drawn that a breath would bring them to the ground. This sceptical attitude does not escape the charge of superficiality. To doubt everything or to believe everything are two equally convenient solutions; both dispense with the necessity of reflection.Instead of a summary condemnation we should examine with the utmost care the rôle of hypothesis; we shall then recognise not only that it is necessary, but that in most cases it is legitimate. We shall also see that there are several kinds of hypotheses; that some are verifiable, and when once confirmed by experiment become truths of great fertility; that others may be useful to us in fixing our ideas; and finally, that others are hypotheses only in appearance, and reduce to definitions or to conventions in disguise. The latter are to be met with especially in mathematics and in the sciences to which it is applied. From them, indeed, the sciences derive their rigour; such conventions are the result of the unrestricted activity of the mind, which in this domain recognizes no obstacle. For here the mind may affirm because it lays down its own laws; but let us clearly understand that while these laws are imposed on science, which otherwise could not exist, they are not imposed on Nature. Are they then arbitrary? No; for if they were, they would not be fertile. Experience leaves us our freedom of choice, but it guides us by helping us to discern the most convenient path to follow. Our laws are therefore like those of an absolute monarch, who is wise and consults his council of state.When the author of the passage says, “The conclusion was drawn that a breath would bring them to the ground”, he essentially refers to:a)the fact that having a sceptical attitude can help in clarifying some hypothesis.b)how one would be better at believing every hypothesis, and how these can ultimately lead to the right solutions.c)how the sceptical approach adopted by many is detrimental to science and why it should be replaced with a positive one.d)the potential of a sceptical attitude to blow away a hypothesis and contrast this with the actual need of deep reflection to arrive at the right conclusions.Correct answer is option 'D'. Can you explain this answer?
Question Description
Directions: Read the following passage and answer the questions that followTo the superficial observer scientific truth is unassailable, the logic of science is infallible; and if scientific men sometimes make mistakes, it is because they have not understood the rules of the game. Mathematical truths are derived from a few self-evident propositions, by a chain of flawless reasonings; they are imposed not only on us, but on Nature itself. By them the Creator is fettered, as it were, and His choice is limited to a relatively small number of solutions. A few experiments, therefore, will be sufficient to enable us to determine what choice He has made. From each experiment a number of consequences will follow by a series of mathematical deductions, and in this way each of them will reveal to us a corner of the universe. This, to the minds of most people, and to students who are getting their first ideas of physics, is the origin of certainty in science. This is what they take to be the role of experiment and mathematics. And thus, too, it was understood a hundred years ago by many men of science who dreamed of constructing the world with the aid of the smallest possible amount of material borrowed from experiment.But upon more mature reflection the position held by hypothesis was seen; it was recognised that it is as necessary to the experimenter as it is to the mathematician. And then the doubt arose if all these constructions are built on solid foundations. The conclusion was drawn that a breath would bring them to the ground. This sceptical attitude does not escape the charge of superficiality. To doubt everything or to believe everything are two equally convenient solutions; both dispense with the necessity of reflection.Instead of a summary condemnation we should examine with the utmost care the rôle of hypothesis; we shall then recognise not only that it is necessary, but that in most cases it is legitimate. We shall also see that there are several kinds of hypotheses; that some are verifiable, and when once confirmed by experiment become truths of great fertility; that others may be useful to us in fixing our ideas; and finally, that others are hypotheses only in appearance, and reduce to definitions or to conventions in disguise. The latter are to be met with especially in mathematics and in the sciences to which it is applied. From them, indeed, the sciences derive their rigour; such conventions are the result of the unrestricted activity of the mind, which in this domain recognizes no obstacle. For here the mind may affirm because it lays down its own laws; but let us clearly understand that while these laws are imposed on science, which otherwise could not exist, they are not imposed on Nature. Are they then arbitrary? No; for if they were, they would not be fertile. Experience leaves us our freedom of choice, but it guides us by helping us to discern the most convenient path to follow. Our laws are therefore like those of an absolute monarch, who is wise and consults his council of state.When the author of the passage says, “The conclusion was drawn that a breath would bring them to the ground”, he essentially refers to:a)the fact that having a sceptical attitude can help in clarifying some hypothesis.b)how one would be better at believing every hypothesis, and how these can ultimately lead to the right solutions.c)how the sceptical approach adopted by many is detrimental to science and why it should be replaced with a positive one.d)the potential of a sceptical attitude to blow away a hypothesis and contrast this with the actual need of deep reflection to arrive at the right conclusions.Correct answer is option 'D'. Can you explain this answer? for CAT 2024 is part of CAT preparation. The Question and answers have been prepared according to the CAT exam syllabus. Information about Directions: Read the following passage and answer the questions that followTo the superficial observer scientific truth is unassailable, the logic of science is infallible; and if scientific men sometimes make mistakes, it is because they have not understood the rules of the game. Mathematical truths are derived from a few self-evident propositions, by a chain of flawless reasonings; they are imposed not only on us, but on Nature itself. By them the Creator is fettered, as it were, and His choice is limited to a relatively small number of solutions. A few experiments, therefore, will be sufficient to enable us to determine what choice He has made. From each experiment a number of consequences will follow by a series of mathematical deductions, and in this way each of them will reveal to us a corner of the universe. This, to the minds of most people, and to students who are getting their first ideas of physics, is the origin of certainty in science. This is what they take to be the role of experiment and mathematics. And thus, too, it was understood a hundred years ago by many men of science who dreamed of constructing the world with the aid of the smallest possible amount of material borrowed from experiment.But upon more mature reflection the position held by hypothesis was seen; it was recognised that it is as necessary to the experimenter as it is to the mathematician. And then the doubt arose if all these constructions are built on solid foundations. The conclusion was drawn that a breath would bring them to the ground. This sceptical attitude does not escape the charge of superficiality. To doubt everything or to believe everything are two equally convenient solutions; both dispense with the necessity of reflection.Instead of a summary condemnation we should examine with the utmost care the rôle of hypothesis; we shall then recognise not only that it is necessary, but that in most cases it is legitimate. We shall also see that there are several kinds of hypotheses; that some are verifiable, and when once confirmed by experiment become truths of great fertility; that others may be useful to us in fixing our ideas; and finally, that others are hypotheses only in appearance, and reduce to definitions or to conventions in disguise. The latter are to be met with especially in mathematics and in the sciences to which it is applied. From them, indeed, the sciences derive their rigour; such conventions are the result of the unrestricted activity of the mind, which in this domain recognizes no obstacle. For here the mind may affirm because it lays down its own laws; but let us clearly understand that while these laws are imposed on science, which otherwise could not exist, they are not imposed on Nature. Are they then arbitrary? No; for if they were, they would not be fertile. Experience leaves us our freedom of choice, but it guides us by helping us to discern the most convenient path to follow. Our laws are therefore like those of an absolute monarch, who is wise and consults his council of state.When the author of the passage says, “The conclusion was drawn that a breath would bring them to the ground”, he essentially refers to:a)the fact that having a sceptical attitude can help in clarifying some hypothesis.b)how one would be better at believing every hypothesis, and how these can ultimately lead to the right solutions.c)how the sceptical approach adopted by many is detrimental to science and why it should be replaced with a positive one.d)the potential of a sceptical attitude to blow away a hypothesis and contrast this with the actual need of deep reflection to arrive at the right conclusions.Correct answer is option 'D'. Can you explain this answer? covers all topics & solutions for CAT 2024 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for Directions: Read the following passage and answer the questions that followTo the superficial observer scientific truth is unassailable, the logic of science is infallible; and if scientific men sometimes make mistakes, it is because they have not understood the rules of the game. Mathematical truths are derived from a few self-evident propositions, by a chain of flawless reasonings; they are imposed not only on us, but on Nature itself. By them the Creator is fettered, as it were, and His choice is limited to a relatively small number of solutions. A few experiments, therefore, will be sufficient to enable us to determine what choice He has made. From each experiment a number of consequences will follow by a series of mathematical deductions, and in this way each of them will reveal to us a corner of the universe. This, to the minds of most people, and to students who are getting their first ideas of physics, is the origin of certainty in science. This is what they take to be the role of experiment and mathematics. And thus, too, it was understood a hundred years ago by many men of science who dreamed of constructing the world with the aid of the smallest possible amount of material borrowed from experiment.But upon more mature reflection the position held by hypothesis was seen; it was recognised that it is as necessary to the experimenter as it is to the mathematician. And then the doubt arose if all these constructions are built on solid foundations. The conclusion was drawn that a breath would bring them to the ground. This sceptical attitude does not escape the charge of superficiality. To doubt everything or to believe everything are two equally convenient solutions; both dispense with the necessity of reflection.Instead of a summary condemnation we should examine with the utmost care the rôle of hypothesis; we shall then recognise not only that it is necessary, but that in most cases it is legitimate. We shall also see that there are several kinds of hypotheses; that some are verifiable, and when once confirmed by experiment become truths of great fertility; that others may be useful to us in fixing our ideas; and finally, that others are hypotheses only in appearance, and reduce to definitions or to conventions in disguise. The latter are to be met with especially in mathematics and in the sciences to which it is applied. From them, indeed, the sciences derive their rigour; such conventions are the result of the unrestricted activity of the mind, which in this domain recognizes no obstacle. For here the mind may affirm because it lays down its own laws; but let us clearly understand that while these laws are imposed on science, which otherwise could not exist, they are not imposed on Nature. Are they then arbitrary? No; for if they were, they would not be fertile. Experience leaves us our freedom of choice, but it guides us by helping us to discern the most convenient path to follow. Our laws are therefore like those of an absolute monarch, who is wise and consults his council of state.When the author of the passage says, “The conclusion was drawn that a breath would bring them to the ground”, he essentially refers to:a)the fact that having a sceptical attitude can help in clarifying some hypothesis.b)how one would be better at believing every hypothesis, and how these can ultimately lead to the right solutions.c)how the sceptical approach adopted by many is detrimental to science and why it should be replaced with a positive one.d)the potential of a sceptical attitude to blow away a hypothesis and contrast this with the actual need of deep reflection to arrive at the right conclusions.Correct answer is option 'D'. Can you explain this answer?.
Solutions for Directions: Read the following passage and answer the questions that followTo the superficial observer scientific truth is unassailable, the logic of science is infallible; and if scientific men sometimes make mistakes, it is because they have not understood the rules of the game. Mathematical truths are derived from a few self-evident propositions, by a chain of flawless reasonings; they are imposed not only on us, but on Nature itself. By them the Creator is fettered, as it were, and His choice is limited to a relatively small number of solutions. A few experiments, therefore, will be sufficient to enable us to determine what choice He has made. From each experiment a number of consequences will follow by a series of mathematical deductions, and in this way each of them will reveal to us a corner of the universe. This, to the minds of most people, and to students who are getting their first ideas of physics, is the origin of certainty in science. This is what they take to be the role of experiment and mathematics. And thus, too, it was understood a hundred years ago by many men of science who dreamed of constructing the world with the aid of the smallest possible amount of material borrowed from experiment.But upon more mature reflection the position held by hypothesis was seen; it was recognised that it is as necessary to the experimenter as it is to the mathematician. And then the doubt arose if all these constructions are built on solid foundations. The conclusion was drawn that a breath would bring them to the ground. This sceptical attitude does not escape the charge of superficiality. To doubt everything or to believe everything are two equally convenient solutions; both dispense with the necessity of reflection.Instead of a summary condemnation we should examine with the utmost care the rôle of hypothesis; we shall then recognise not only that it is necessary, but that in most cases it is legitimate. We shall also see that there are several kinds of hypotheses; that some are verifiable, and when once confirmed by experiment become truths of great fertility; that others may be useful to us in fixing our ideas; and finally, that others are hypotheses only in appearance, and reduce to definitions or to conventions in disguise. The latter are to be met with especially in mathematics and in the sciences to which it is applied. From them, indeed, the sciences derive their rigour; such conventions are the result of the unrestricted activity of the mind, which in this domain recognizes no obstacle. For here the mind may affirm because it lays down its own laws; but let us clearly understand that while these laws are imposed on science, which otherwise could not exist, they are not imposed on Nature. Are they then arbitrary? No; for if they were, they would not be fertile. Experience leaves us our freedom of choice, but it guides us by helping us to discern the most convenient path to follow. Our laws are therefore like those of an absolute monarch, who is wise and consults his council of state.When the author of the passage says, “The conclusion was drawn that a breath would bring them to the ground”, he essentially refers to:a)the fact that having a sceptical attitude can help in clarifying some hypothesis.b)how one would be better at believing every hypothesis, and how these can ultimately lead to the right solutions.c)how the sceptical approach adopted by many is detrimental to science and why it should be replaced with a positive one.d)the potential of a sceptical attitude to blow away a hypothesis and contrast this with the actual need of deep reflection to arrive at the right conclusions.Correct answer is option 'D'. Can you explain this answer? in English & in Hindi are available as part of our courses for CAT. Download more important topics, notes, lectures and mock test series for CAT Exam by signing up for free.
Here you can find the meaning of Directions: Read the following passage and answer the questions that followTo the superficial observer scientific truth is unassailable, the logic of science is infallible; and if scientific men sometimes make mistakes, it is because they have not understood the rules of the game. Mathematical truths are derived from a few self-evident propositions, by a chain of flawless reasonings; they are imposed not only on us, but on Nature itself. By them the Creator is fettered, as it were, and His choice is limited to a relatively small number of solutions. A few experiments, therefore, will be sufficient to enable us to determine what choice He has made. From each experiment a number of consequences will follow by a series of mathematical deductions, and in this way each of them will reveal to us a corner of the universe. This, to the minds of most people, and to students who are getting their first ideas of physics, is the origin of certainty in science. This is what they take to be the role of experiment and mathematics. And thus, too, it was understood a hundred years ago by many men of science who dreamed of constructing the world with the aid of the smallest possible amount of material borrowed from experiment.But upon more mature reflection the position held by hypothesis was seen; it was recognised that it is as necessary to the experimenter as it is to the mathematician. And then the doubt arose if all these constructions are built on solid foundations. The conclusion was drawn that a breath would bring them to the ground. This sceptical attitude does not escape the charge of superficiality. To doubt everything or to believe everything are two equally convenient solutions; both dispense with the necessity of reflection.Instead of a summary condemnation we should examine with the utmost care the rôle of hypothesis; we shall then recognise not only that it is necessary, but that in most cases it is legitimate. We shall also see that there are several kinds of hypotheses; that some are verifiable, and when once confirmed by experiment become truths of great fertility; that others may be useful to us in fixing our ideas; and finally, that others are hypotheses only in appearance, and reduce to definitions or to conventions in disguise. The latter are to be met with especially in mathematics and in the sciences to which it is applied. From them, indeed, the sciences derive their rigour; such conventions are the result of the unrestricted activity of the mind, which in this domain recognizes no obstacle. For here the mind may affirm because it lays down its own laws; but let us clearly understand that while these laws are imposed on science, which otherwise could not exist, they are not imposed on Nature. Are they then arbitrary? No; for if they were, they would not be fertile. Experience leaves us our freedom of choice, but it guides us by helping us to discern the most convenient path to follow. Our laws are therefore like those of an absolute monarch, who is wise and consults his council of state.When the author of the passage says, “The conclusion was drawn that a breath would bring them to the ground”, he essentially refers to:a)the fact that having a sceptical attitude can help in clarifying some hypothesis.b)how one would be better at believing every hypothesis, and how these can ultimately lead to the right solutions.c)how the sceptical approach adopted by many is detrimental to science and why it should be replaced with a positive one.d)the potential of a sceptical attitude to blow away a hypothesis and contrast this with the actual need of deep reflection to arrive at the right conclusions.Correct answer is option 'D'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of Directions: Read the following passage and answer the questions that followTo the superficial observer scientific truth is unassailable, the logic of science is infallible; and if scientific men sometimes make mistakes, it is because they have not understood the rules of the game. Mathematical truths are derived from a few self-evident propositions, by a chain of flawless reasonings; they are imposed not only on us, but on Nature itself. By them the Creator is fettered, as it were, and His choice is limited to a relatively small number of solutions. A few experiments, therefore, will be sufficient to enable us to determine what choice He has made. From each experiment a number of consequences will follow by a series of mathematical deductions, and in this way each of them will reveal to us a corner of the universe. This, to the minds of most people, and to students who are getting their first ideas of physics, is the origin of certainty in science. This is what they take to be the role of experiment and mathematics. And thus, too, it was understood a hundred years ago by many men of science who dreamed of constructing the world with the aid of the smallest possible amount of material borrowed from experiment.But upon more mature reflection the position held by hypothesis was seen; it was recognised that it is as necessary to the experimenter as it is to the mathematician. And then the doubt arose if all these constructions are built on solid foundations. The conclusion was drawn that a breath would bring them to the ground. This sceptical attitude does not escape the charge of superficiality. To doubt everything or to believe everything are two equally convenient solutions; both dispense with the necessity of reflection.Instead of a summary condemnation we should examine with the utmost care the rôle of hypothesis; we shall then recognise not only that it is necessary, but that in most cases it is legitimate. We shall also see that there are several kinds of hypotheses; that some are verifiable, and when once confirmed by experiment become truths of great fertility; that others may be useful to us in fixing our ideas; and finally, that others are hypotheses only in appearance, and reduce to definitions or to conventions in disguise. The latter are to be met with especially in mathematics and in the sciences to which it is applied. From them, indeed, the sciences derive their rigour; such conventions are the result of the unrestricted activity of the mind, which in this domain recognizes no obstacle. For here the mind may affirm because it lays down its own laws; but let us clearly understand that while these laws are imposed on science, which otherwise could not exist, they are not imposed on Nature. Are they then arbitrary? No; for if they were, they would not be fertile. Experience leaves us our freedom of choice, but it guides us by helping us to discern the most convenient path to follow. Our laws are therefore like those of an absolute monarch, who is wise and consults his council of state.When the author of the passage says, “The conclusion was drawn that a breath would bring them to the ground”, he essentially refers to:a)the fact that having a sceptical attitude can help in clarifying some hypothesis.b)how one would be better at believing every hypothesis, and how these can ultimately lead to the right solutions.c)how the sceptical approach adopted by many is detrimental to science and why it should be replaced with a positive one.d)the potential of a sceptical attitude to blow away a hypothesis and contrast this with the actual need of deep reflection to arrive at the right conclusions.Correct answer is option 'D'. Can you explain this answer?, a detailed solution for Directions: Read the following passage and answer the questions that followTo the superficial observer scientific truth is unassailable, the logic of science is infallible; and if scientific men sometimes make mistakes, it is because they have not understood the rules of the game. Mathematical truths are derived from a few self-evident propositions, by a chain of flawless reasonings; they are imposed not only on us, but on Nature itself. By them the Creator is fettered, as it were, and His choice is limited to a relatively small number of solutions. A few experiments, therefore, will be sufficient to enable us to determine what choice He has made. From each experiment a number of consequences will follow by a series of mathematical deductions, and in this way each of them will reveal to us a corner of the universe. This, to the minds of most people, and to students who are getting their first ideas of physics, is the origin of certainty in science. This is what they take to be the role of experiment and mathematics. And thus, too, it was understood a hundred years ago by many men of science who dreamed of constructing the world with the aid of the smallest possible amount of material borrowed from experiment.But upon more mature reflection the position held by hypothesis was seen; it was recognised that it is as necessary to the experimenter as it is to the mathematician. And then the doubt arose if all these constructions are built on solid foundations. The conclusion was drawn that a breath would bring them to the ground. This sceptical attitude does not escape the charge of superficiality. To doubt everything or to believe everything are two equally convenient solutions; both dispense with the necessity of reflection.Instead of a summary condemnation we should examine with the utmost care the rôle of hypothesis; we shall then recognise not only that it is necessary, but that in most cases it is legitimate. We shall also see that there are several kinds of hypotheses; that some are verifiable, and when once confirmed by experiment become truths of great fertility; that others may be useful to us in fixing our ideas; and finally, that others are hypotheses only in appearance, and reduce to definitions or to conventions in disguise. The latter are to be met with especially in mathematics and in the sciences to which it is applied. From them, indeed, the sciences derive their rigour; such conventions are the result of the unrestricted activity of the mind, which in this domain recognizes no obstacle. For here the mind may affirm because it lays down its own laws; but let us clearly understand that while these laws are imposed on science, which otherwise could not exist, they are not imposed on Nature. Are they then arbitrary? No; for if they were, they would not be fertile. Experience leaves us our freedom of choice, but it guides us by helping us to discern the most convenient path to follow. Our laws are therefore like those of an absolute monarch, who is wise and consults his council of state.When the author of the passage says, “The conclusion was drawn that a breath would bring them to the ground”, he essentially refers to:a)the fact that having a sceptical attitude can help in clarifying some hypothesis.b)how one would be better at believing every hypothesis, and how these can ultimately lead to the right solutions.c)how the sceptical approach adopted by many is detrimental to science and why it should be replaced with a positive one.d)the potential of a sceptical attitude to blow away a hypothesis and contrast this with the actual need of deep reflection to arrive at the right conclusions.Correct answer is option 'D'. Can you explain this answer? has been provided alongside types of Directions: Read the following passage and answer the questions that followTo the superficial observer scientific truth is unassailable, the logic of science is infallible; and if scientific men sometimes make mistakes, it is because they have not understood the rules of the game. Mathematical truths are derived from a few self-evident propositions, by a chain of flawless reasonings; they are imposed not only on us, but on Nature itself. By them the Creator is fettered, as it were, and His choice is limited to a relatively small number of solutions. A few experiments, therefore, will be sufficient to enable us to determine what choice He has made. From each experiment a number of consequences will follow by a series of mathematical deductions, and in this way each of them will reveal to us a corner of the universe. This, to the minds of most people, and to students who are getting their first ideas of physics, is the origin of certainty in science. This is what they take to be the role of experiment and mathematics. And thus, too, it was understood a hundred years ago by many men of science who dreamed of constructing the world with the aid of the smallest possible amount of material borrowed from experiment.But upon more mature reflection the position held by hypothesis was seen; it was recognised that it is as necessary to the experimenter as it is to the mathematician. And then the doubt arose if all these constructions are built on solid foundations. The conclusion was drawn that a breath would bring them to the ground. This sceptical attitude does not escape the charge of superficiality. To doubt everything or to believe everything are two equally convenient solutions; both dispense with the necessity of reflection.Instead of a summary condemnation we should examine with the utmost care the rôle of hypothesis; we shall then recognise not only that it is necessary, but that in most cases it is legitimate. We shall also see that there are several kinds of hypotheses; that some are verifiable, and when once confirmed by experiment become truths of great fertility; that others may be useful to us in fixing our ideas; and finally, that others are hypotheses only in appearance, and reduce to definitions or to conventions in disguise. The latter are to be met with especially in mathematics and in the sciences to which it is applied. From them, indeed, the sciences derive their rigour; such conventions are the result of the unrestricted activity of the mind, which in this domain recognizes no obstacle. For here the mind may affirm because it lays down its own laws; but let us clearly understand that while these laws are imposed on science, which otherwise could not exist, they are not imposed on Nature. Are they then arbitrary? No; for if they were, they would not be fertile. Experience leaves us our freedom of choice, but it guides us by helping us to discern the most convenient path to follow. Our laws are therefore like those of an absolute monarch, who is wise and consults his council of state.When the author of the passage says, “The conclusion was drawn that a breath would bring them to the ground”, he essentially refers to:a)the fact that having a sceptical attitude can help in clarifying some hypothesis.b)how one would be better at believing every hypothesis, and how these can ultimately lead to the right solutions.c)how the sceptical approach adopted by many is detrimental to science and why it should be replaced with a positive one.d)the potential of a sceptical attitude to blow away a hypothesis and contrast this with the actual need of deep reflection to arrive at the right conclusions.Correct answer is option 'D'. Can you explain this answer? theory, EduRev gives you an ample number of questions to practice Directions: Read the following passage and answer the questions that followTo the superficial observer scientific truth is unassailable, the logic of science is infallible; and if scientific men sometimes make mistakes, it is because they have not understood the rules of the game. Mathematical truths are derived from a few self-evident propositions, by a chain of flawless reasonings; they are imposed not only on us, but on Nature itself. By them the Creator is fettered, as it were, and His choice is limited to a relatively small number of solutions. A few experiments, therefore, will be sufficient to enable us to determine what choice He has made. From each experiment a number of consequences will follow by a series of mathematical deductions, and in this way each of them will reveal to us a corner of the universe. This, to the minds of most people, and to students who are getting their first ideas of physics, is the origin of certainty in science. This is what they take to be the role of experiment and mathematics. And thus, too, it was understood a hundred years ago by many men of science who dreamed of constructing the world with the aid of the smallest possible amount of material borrowed from experiment.But upon more mature reflection the position held by hypothesis was seen; it was recognised that it is as necessary to the experimenter as it is to the mathematician. And then the doubt arose if all these constructions are built on solid foundations. The conclusion was drawn that a breath would bring them to the ground. This sceptical attitude does not escape the charge of superficiality. To doubt everything or to believe everything are two equally convenient solutions; both dispense with the necessity of reflection.Instead of a summary condemnation we should examine with the utmost care the rôle of hypothesis; we shall then recognise not only that it is necessary, but that in most cases it is legitimate. We shall also see that there are several kinds of hypotheses; that some are verifiable, and when once confirmed by experiment become truths of great fertility; that others may be useful to us in fixing our ideas; and finally, that others are hypotheses only in appearance, and reduce to definitions or to conventions in disguise. The latter are to be met with especially in mathematics and in the sciences to which it is applied. From them, indeed, the sciences derive their rigour; such conventions are the result of the unrestricted activity of the mind, which in this domain recognizes no obstacle. For here the mind may affirm because it lays down its own laws; but let us clearly understand that while these laws are imposed on science, which otherwise could not exist, they are not imposed on Nature. Are they then arbitrary? No; for if they were, they would not be fertile. Experience leaves us our freedom of choice, but it guides us by helping us to discern the most convenient path to follow. Our laws are therefore like those of an absolute monarch, who is wise and consults his council of state.When the author of the passage says, “The conclusion was drawn that a breath would bring them to the ground”, he essentially refers to:a)the fact that having a sceptical attitude can help in clarifying some hypothesis.b)how one would be better at believing every hypothesis, and how these can ultimately lead to the right solutions.c)how the sceptical approach adopted by many is detrimental to science and why it should be replaced with a positive one.d)the potential of a sceptical attitude to blow away a hypothesis and contrast this with the actual need of deep reflection to arrive at the right conclusions.Correct answer is option 'D'. Can you explain this answer? tests, examples and also practice CAT tests.
Explore Courses for CAT exam

Top Courses for CAT

Explore Courses
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev