Question Description
A 10kw, 400V, 3-phase, 4-pole, 50 HZ delta connected induction motor is running at no lode with a line current of 8A and an input power is 660 kW. At full load, the line current is 18 A and the input power is 11.20 kW. Stator effective resistance per phase is 1.2 ohm and friction, winding loss is 420 watts. For negligible rotor ohmic losses at no load, calculate (i) stator core loss (ii) slip at full load (iii) total rotor ohmic losses at full load (iv) full load speed.? for Electrical Engineering (EE) 2024 is part of Electrical Engineering (EE) preparation. The Question and answers have been prepared
according to
the Electrical Engineering (EE) exam syllabus. Information about A 10kw, 400V, 3-phase, 4-pole, 50 HZ delta connected induction motor is running at no lode with a line current of 8A and an input power is 660 kW. At full load, the line current is 18 A and the input power is 11.20 kW. Stator effective resistance per phase is 1.2 ohm and friction, winding loss is 420 watts. For negligible rotor ohmic losses at no load, calculate (i) stator core loss (ii) slip at full load (iii) total rotor ohmic losses at full load (iv) full load speed.? covers all topics & solutions for Electrical Engineering (EE) 2024 Exam.
Find important definitions, questions, meanings, examples, exercises and tests below for A 10kw, 400V, 3-phase, 4-pole, 50 HZ delta connected induction motor is running at no lode with a line current of 8A and an input power is 660 kW. At full load, the line current is 18 A and the input power is 11.20 kW. Stator effective resistance per phase is 1.2 ohm and friction, winding loss is 420 watts. For negligible rotor ohmic losses at no load, calculate (i) stator core loss (ii) slip at full load (iii) total rotor ohmic losses at full load (iv) full load speed.?.
Solutions for A 10kw, 400V, 3-phase, 4-pole, 50 HZ delta connected induction motor is running at no lode with a line current of 8A and an input power is 660 kW. At full load, the line current is 18 A and the input power is 11.20 kW. Stator effective resistance per phase is 1.2 ohm and friction, winding loss is 420 watts. For negligible rotor ohmic losses at no load, calculate (i) stator core loss (ii) slip at full load (iii) total rotor ohmic losses at full load (iv) full load speed.? in English & in Hindi are available as part of our courses for Electrical Engineering (EE).
Download more important topics, notes, lectures and mock test series for Electrical Engineering (EE) Exam by signing up for free.
Here you can find the meaning of A 10kw, 400V, 3-phase, 4-pole, 50 HZ delta connected induction motor is running at no lode with a line current of 8A and an input power is 660 kW. At full load, the line current is 18 A and the input power is 11.20 kW. Stator effective resistance per phase is 1.2 ohm and friction, winding loss is 420 watts. For negligible rotor ohmic losses at no load, calculate (i) stator core loss (ii) slip at full load (iii) total rotor ohmic losses at full load (iv) full load speed.? defined & explained in the simplest way possible. Besides giving the explanation of
A 10kw, 400V, 3-phase, 4-pole, 50 HZ delta connected induction motor is running at no lode with a line current of 8A and an input power is 660 kW. At full load, the line current is 18 A and the input power is 11.20 kW. Stator effective resistance per phase is 1.2 ohm and friction, winding loss is 420 watts. For negligible rotor ohmic losses at no load, calculate (i) stator core loss (ii) slip at full load (iii) total rotor ohmic losses at full load (iv) full load speed.?, a detailed solution for A 10kw, 400V, 3-phase, 4-pole, 50 HZ delta connected induction motor is running at no lode with a line current of 8A and an input power is 660 kW. At full load, the line current is 18 A and the input power is 11.20 kW. Stator effective resistance per phase is 1.2 ohm and friction, winding loss is 420 watts. For negligible rotor ohmic losses at no load, calculate (i) stator core loss (ii) slip at full load (iii) total rotor ohmic losses at full load (iv) full load speed.? has been provided alongside types of A 10kw, 400V, 3-phase, 4-pole, 50 HZ delta connected induction motor is running at no lode with a line current of 8A and an input power is 660 kW. At full load, the line current is 18 A and the input power is 11.20 kW. Stator effective resistance per phase is 1.2 ohm and friction, winding loss is 420 watts. For negligible rotor ohmic losses at no load, calculate (i) stator core loss (ii) slip at full load (iii) total rotor ohmic losses at full load (iv) full load speed.? theory, EduRev gives you an
ample number of questions to practice A 10kw, 400V, 3-phase, 4-pole, 50 HZ delta connected induction motor is running at no lode with a line current of 8A and an input power is 660 kW. At full load, the line current is 18 A and the input power is 11.20 kW. Stator effective resistance per phase is 1.2 ohm and friction, winding loss is 420 watts. For negligible rotor ohmic losses at no load, calculate (i) stator core loss (ii) slip at full load (iii) total rotor ohmic losses at full load (iv) full load speed.? tests, examples and also practice Electrical Engineering (EE) tests.