Explanation of the Identity: sin(2θ) = 2sin(θ)cos(θ) / 1 - cos^2(θ)
The given identity is: sin(2θ) = 2sin(θ)cos(θ) / 1 - cos^2(θ)
Proof:
To prove this identity, we will use the double angle formula for sine:
sin(2θ) = 2sin(θ)cos(θ)
We will also use the Pythagorean identity:
sin^2(θ) + cos^2(θ) = 1
Step 1:
Start with the expression sin(2θ).
Step 2:
Apply the double angle formula for sine:
sin(2θ) = 2sin(θ)cos(θ)
Step 3:
Multiply the numerator and denominator by 1 + cos(2θ):
sin(2θ) = (2sin(θ)cos(θ))(1 + cos(2θ)) / (1 + cos(2θ))
Step 4:
Expand the denominator using the double angle formula for cosine:
sin(2θ) = (2sin(θ)cos(θ))(1 + cos^2(θ) - sin^2(θ)) / (1 + 2cos^2(θ) - 1)
Simplify the denominator:
sin(2θ) = (2sin(θ)cos(θ))(cos^2(θ) - sin^2(θ)) / (2cos^2(θ))
Step 5:
Rearrange the terms in the numerator:
sin(2θ) = 2sin(θ)cos(θ)(-sin^2(θ) + cos^2(θ)) / (2cos^2(θ))
Step 6:
Combine like terms in the numerator:
sin(2θ) = 2sin(θ)cos(θ)(cos^2(θ) - sin^2(θ)) / (2cos^2(θ))
Step 7:
Use the Pythagorean identity sin^2(θ) + cos^2(θ) = 1 to simplify the numerator:
sin(2θ) = 2sin(θ)cos(θ)(1 - sin^2(θ)) / (2cos^2(θ))
Step 8:
Simplify further:
sin(2θ) = 2sin(θ)cos(θ)(1 - sin^2(θ)) / (2cos^2(θ))
Step 9:
Cancel out the common factors in the numerator and denominator:
sin(2θ) = sin(θ)(1 - sin^2(θ)) / cos^2(θ)
Step 10:
Replace sin^2(θ) with 1 - cos^2(θ) using the Pythagorean identity:
sin(2θ) = sin(θ)(1 - (1 - cos^2(θ))) / cos^2(θ)
Simplify the expression:
sin(2