ACT Exam  >  ACT Questions  >  Eukaryotic cells, cells that contain membrane... Start Learning for Free
Eukaryotic cells, cells that contain membrane-bound organelles and generally reside within multicellular organisms, contain DNA, or deoxyribonucleic acid, which is organized into chromosomes. DNA is a double-stranded nucleic acid that forms a double helix. The bases found within a DNA molecule are adenine (A), thymine (T), guanine (G), and cytosine (C). DNA is organized into functional units, called genes, that encode the basic traits and characteristics of living organisms. DNA can be replicated within the nucleus prior to cell division to ensure each daughter cell receives an identical copy of DNA. The central dogma of molecular biology states that DNA is transcribed to RNA which is then translated into protein. RNA, or ribonucleic acid, is a nucleic acid found in all cells that serves a messenger to carry the genetic code from DNA to produce a functional molecule, the protein. RNA is a single-stranded nucleic acid and consists of the bases adenine (A), uracil (U), guanine (G), and cytosine (C). RNA is translated into amino acids on the ribosome to produce a polypeptide chain, or a protein. There are two general hypotheses for the original evolutionary molecule. The “RNA world” hypothesis states that the original genetic molecule is RNA, and RNA was able to be translated into protein and reverse transcribed to produce DNA. Alternatively, the “DNA, RNA, and Protein World” suggests that DNA was the original genetic molecule and was responsible for subsequent production of RNA and protein.
Q. A new organism is identified and the only nucleic acid contained within its cells is RNA. Which hypothesis would be supported by such a finding?
  • a)
    RNA World
  • b)
    DNA, RNA, Protein World
  • c)
    Transcription
  • d)
    The Central Dogma
Correct answer is option 'A'. Can you explain this answer?
Verified Answer
Eukaryotic cells, cells that contain membrane-bound organelles and gen...
The RNA World hypothesis states that RNA was the first genetic material. Idenitifying and organism that contains RNA but not DNA suggests that organisms can survive without DNA, supporting the idea that RNA may have been the first sole genetic information.
View all questions of this test
Explore Courses for ACT exam

Similar ACT Doubts

Direction:Read the passages and choose the best answer to each question.PassageNATURAL SCIENCE: Heredity and Gene-linkage: A Possible RelationshipThe ability of every organism on earth to repro-duce is the hallmark of life. Reproduction can be eitherasexual, involving a single parent, or sexual, involvingtwo parents. Sexual reproduction begets offspring that(5)inherit half of their genes from each parent. This trans-mission of genes from one generation to the next iscalled heredity.Each hereditary unit, the gene, contains specificencoded information that translates into an organism’s(10)inherited traits. Inherited traits range from hair color,to height to susceptibility to disease. Genes are actu-ally segments of the DNA molecule, and it is theprecise replication of DNA that produces copies ofgenes that can be passed from parents to offspring.(15)DNA is subdivided into chromosomes that each includehundreds or thousands of genes. The specific traits orcharacteristics of each offspring depend on the arrange-ment and combination of the chromosomes supplied byboth parents.(20)Genes located on the same chromosome tend tobe inherited together. Transmission of these so-calledlinked genes can affect the inheritance of two dif-ferent characteristics. Thomas Hunt Morgan was thefirst biologist to associate specific genes with specific(25)chromosomes. In the early 20th century, Morganselected a species of fruit fly, Drosophila melanogaster,on which to study his genetic theory. The fruit fly is aprolific breeder, producing hundreds of offspring in asingle mating. In addition, the fruit fly has only four(30)pairs of easily distinguishable chromosomes, makingit the ideal experimental organism. Soon after Morgancommenced working with Drosophila, he began tonotice variations in certain traits.For example, Morgan noticed that the natural(35)characteristics of Drosophila included gray bodiesand normal wings. However, mutant examples ofthese characteristics sometimes appeared; these flieshad black bodies, and much smaller, vestigial wings.Morgan crossed female flies that appeared normal, but(40)carried the mutant genes, with males that exhibited themutations. He expected the offspring to include equalnumbers of gray flies with normal wings, black flieswith vestigial wings, gray flies with vestigial wings,and black flies with normal wings. What he found was(45)a disproportionate number of gray flies with normalwings and black flies with vestigial wings, which sug-gested to him that the genes for body color and wingsize are transmitted together from parents to offspringbecause they are located on the same chromosome and(50)must be somehow linked.Additional research conducted by Morgan onD. melanogaster demonstrated that many, often spon-taneous mutations occur across generations. Theseobservations, together with the results of experiments(55)carried out to test his theory on linked genes, ledMorgan to postulate that the location of the genes onthe chromosomes contributes to the likelihood of anygiven gene being transmitted from parent to offspring.This theory of linear arrangement, along with Morgan’s(60)other important contributions to the field of genetics,led to his being awarded the Nobel Prize in Physiologyor Medicine in 1933.Current research exploring the significance oflinked genes reveals that many factors affect the trans-(65)mission of certain traits from parents to offspring. Thelocation of genes on a particular chromosome is but oneof a multitude of determinants involved in whether ornot a characteristic will be inherited.Q.The main idea of the passage is that

Direction:Read the passages and choose the best answer to each question.PassageNATURAL SCIENCE: Heredity and Gene-linkage: A Possible RelationshipThe ability of every organism on earth to repro-duce is the hallmark of life. Reproduction can be eitherasexual, involving a single parent, or sexual, involvingtwo parents. Sexual reproduction begets offspring that(5)inherit half of their genes from each parent. This trans-mission of genes from one generation to the next iscalled heredity.Each hereditary unit, the gene, contains specificencoded information that translates into an organism’s(10)inherited traits. Inherited traits range from hair color,to height to susceptibility to disease. Genes are actu-ally segments of the DNA molecule, and it is theprecise replication of DNA that produces copies ofgenes that can be passed from parents to offspring.(15)DNA is subdivided into chromosomes that each includehundreds or thousands of genes. The specific traits orcharacteristics of each offspring depend on the arrange-ment and combination of the chromosomes supplied byboth parents.(20)Genes located on the same chromosome tend tobe inherited together. Transmission of these so-calledlinked genes can affect the inheritance of two dif-ferent characteristics. Thomas Hunt Morgan was thefirst biologist to associate specific genes with specific(25)chromosomes. In the early 20th century, Morganselected a species of fruit fly, Drosophila melanogaster,on which to study his genetic theory. The fruit fly is aprolific breeder, producing hundreds of offspring in asingle mating. In addition, the fruit fly has only four(30)pairs of easily distinguishable chromosomes, makingit the ideal experimental organism. Soon after Morgancommenced working with Drosophila, he began tonotice variations in certain traits.For example, Morgan noticed that the natural(35)characteristics of Drosophila included gray bodiesand normal wings. However, mutant examples ofthese characteristics sometimes appeared; these flieshad black bodies, and much smaller, vestigial wings.Morgan crossed female flies that appeared normal, but(40)carried the mutant genes, with males that exhibited themutations. He expected the offspring to include equalnumbers of gray flies with normal wings, black flieswith vestigial wings, gray flies with vestigial wings,and black flies with normal wings. What he found was(45)a disproportionate number of gray flies with normalwings and black flies with vestigial wings, which sug-gested to him that the genes for body color and wingsize are transmitted together from parents to offspringbecause they are located on the same chromosome and(50)must be somehow linked.Additional research conducted by Morgan onD. melanogaster demonstrated that many, often spon-taneous mutations occur across generations. Theseobservations, together with the results of experiments(55)carried out to test his theory on linked genes, ledMorgan to postulate that the location of the genes onthe chromosomes contributes to the likelihood of anygiven gene being transmitted from parent to offspring.This theory of linear arrangement, along with Morgan’s(60)other important contributions to the field of genetics,led to his being awarded the Nobel Prize in Physiologyor Medicine in 1933.Current research exploring the significance oflinked genes reveals that many factors affect the trans-(65)mission of certain traits from parents to offspring. Thelocation of genes on a particular chromosome is but oneof a multitude of determinants involved in whether ornot a characteristic will be inherited.Q.With which of the following statements would the author most likely agree?

Direction:Read the passages and choose the best answer to each question.PassageNATURAL SCIENCE: Heredity and Gene-linkage: A Possible RelationshipThe ability of every organism on earth to repro-duce is the hallmark of life. Reproduction can be eitherasexual, involving a single parent, or sexual, involvingtwo parents. Sexual reproduction begets offspring that(5)inherit half of their genes from each parent. This trans-mission of genes from one generation to the next iscalled heredity.Each hereditary unit, the gene, contains specificencoded information that translates into an organism’s(10)inherited traits. Inherited traits range from hair color,to height to susceptibility to disease. Genes are actu-ally segments of the DNA molecule, and it is theprecise replication of DNA that produces copies ofgenes that can be passed from parents to offspring.(15)DNA is subdivided into chromosomes that each includehundreds or thousands of genes. The specific traits orcharacteristics of each offspring depend on the arrange-ment and combination of the chromosomes supplied byboth parents.(20)Genes located on the same chromosome tend tobe inherited together. Transmission of these so-calledlinked genes can affect the inheritance of two dif-ferent characteristics. Thomas Hunt Morgan was thefirst biologist to associate specific genes with specific(25)chromosomes. In the early 20th century, Morganselected a species of fruit fly, Drosophila melanogaster,on which to study his genetic theory. The fruit fly is aprolific breeder, producing hundreds of offspring in asingle mating. In addition, the fruit fly has only four(30)pairs of easily distinguishable chromosomes, makingit the ideal experimental organism. Soon after Morgancommenced working with Drosophila, he began tonotice variations in certain traits.For example, Morgan noticed that the natural(35)characteristics of Drosophila included gray bodiesand normal wings. However, mutant examples ofthese characteristics sometimes appeared; these flieshad black bodies, and much smaller, vestigial wings.Morgan crossed female flies that appeared normal, but(40)carried the mutant genes, with males that exhibited themutations. He expected the offspring to include equalnumbers of gray flies with normal wings, black flieswith vestigial wings, gray flies with vestigial wings,and black flies with normal wings. What he found was(45)a disproportionate number of gray flies with normalwings and black flies with vestigial wings, which sug-gested to him that the genes for body color and wingsize are transmitted together from parents to offspringbecause they are located on the same chromosome and(50)must be somehow linked.Additional research conducted by Morgan onD. melanogaster demonstrated that many, often spon-taneous mutations occur across generations. Theseobservations, together with the results of experiments(55)carried out to test his theory on linked genes, ledMorgan to postulate that the location of the genes onthe chromosomes contributes to the likelihood of anygiven gene being transmitted from parent to offspring.This theory of linear arrangement, along with Morgan’s(60)other important contributions to the field of genetics,led to his being awarded the Nobel Prize in Physiologyor Medicine in 1933.Current research exploring the significance oflinked genes reveals that many factors affect the trans-(65)mission of certain traits from parents to offspring. Thelocation of genes on a particular chromosome is but oneof a multitude of determinants involved in whether ornot a characteristic will be inherited.Q.The passsage states that all of the following are examples of inherited traits EXCEPT

Direction:Read the passages and choose the best answer to each question.PassageNATURAL SCIENCE: Heredity and Gene-linkage: A Possible RelationshipThe ability of every organism on earth to repro-duce is the hallmark of life. Reproduction can be eitherasexual, involving a single parent, or sexual, involvingtwo parents. Sexual reproduction begets offspring that(5)inherit half of their genes from each parent. This trans-mission of genes from one generation to the next iscalled heredity.Each hereditary unit, the gene, contains specificencoded information that translates into an organism’s(10)inherited traits. Inherited traits range from hair color,to height to susceptibility to disease. Genes are actu-ally segments of the DNA molecule, and it is theprecise replication of DNA that produces copies ofgenes that can be passed from parents to offspring.(15)DNA is subdivided into chromosomes that each includehundreds or thousands of genes. The specific traits orcharacteristics of each offspring depend on the arrange-ment and combination of the chromosomes supplied byboth parents.(20)Genes located on the same chromosome tend tobe inherited together. Transmission of these so-calledlinked genes can affect the inheritance of two dif-ferent characteristics. Thomas Hunt Morgan was thefirst biologist to associate specific genes with specific(25)chromosomes. In the early 20th century, Morganselected a species of fruit fly, Drosophila melanogaster,on which to study his genetic theory. The fruit fly is aprolific breeder, producing hundreds of offspring in asingle mating. In addition, the fruit fly has only four(30)pairs of easily distinguishable chromosomes, makingit the ideal experimental organism. Soon after Morgancommenced working with Drosophila, he began tonotice variations in certain traits.For example, Morgan noticed that the natural(35)characteristics of Drosophila included gray bodiesand normal wings. However, mutant examples ofthese characteristics sometimes appeared; these flieshad black bodies, and much smaller, vestigial wings.Morgan crossed female flies that appeared normal, but(40)carried the mutant genes, with males that exhibited themutations. He expected the offspring to include equalnumbers of gray flies with normal wings, black flieswith vestigial wings, gray flies with vestigial wings,and black flies with normal wings. What he found was(45)a disproportionate number of gray flies with normalwings and black flies with vestigial wings, which sug-gested to him that the genes for body color and wingsize are transmitted together from parents to offspringbecause they are located on the same chromosome and(50)must be somehow linked.Additional research conducted by Morgan onD. melanogaster demonstrated that many, often spon-taneous mutations occur across generations. Theseobservations, together with the results of experiments(55)carried out to test his theory on linked genes, ledMorgan to postulate that the location of the genes onthe chromosomes contributes to the likelihood of anygiven gene being transmitted from parent to offspring.This theory of linear arrangement, along with Morgan’s(60)other important contributions to the field of genetics,led to his being awarded the Nobel Prize in Physiologyor Medicine in 1933.Current research exploring the significance oflinked genes reveals that many factors affect the trans-(65)mission of certain traits from parents to offspring. Thelocation of genes on a particular chromosome is but oneof a multitude of determinants involved in whether ornot a characteristic will be inherited.Q.What, according to the passage, was the primary reason that Thomas Hunt Morgan chose to experiment on Drosophila melanogaster?

Direction:Read the passages and choose the best answer to each question.PassageNATURAL SCIENCE: Heredity and Gene-linkage: A Possible RelationshipThe ability of every organism on earth to repro-duce is the hallmark of life. Reproduction can be eitherasexual, involving a single parent, or sexual, involvingtwo parents. Sexual reproduction begets offspring that(5)inherit half of their genes from each parent. This trans-mission of genes from one generation to the next iscalled heredity.Each hereditary unit, the gene, contains specificencoded information that translates into an organism’s(10)inherited traits. Inherited traits range from hair color,to height to susceptibility to disease. Genes are actu-ally segments of the DNA molecule, and it is theprecise replication of DNA that produces copies ofgenes that can be passed from parents to offspring.(15)DNA is subdivided into chromosomes that each includehundreds or thousands of genes. The specific traits orcharacteristics of each offspring depend on the arrange-ment and combination of the chromosomes supplied byboth parents.(20)Genes located on the same chromosome tend tobe inherited together. Transmission of these so-calledlinked genes can affect the inheritance of two dif-ferent characteristics. Thomas Hunt Morgan was thefirst biologist to associate specific genes with specific(25)chromosomes. In the early 20th century, Morganselected a species of fruit fly, Drosophila melanogaster,on which to study his genetic theory. The fruit fly is aprolific breeder, producing hundreds of offspring in asingle mating. In addition, the fruit fly has only four(30)pairs of easily distinguishable chromosomes, makingit the ideal experimental organism. Soon after Morgancommenced working with Drosophila, he began tonotice variations in certain traits.For example, Morgan noticed that the natural(35)characteristics of Drosophila included gray bodiesand normal wings. However, mutant examples ofthese characteristics sometimes appeared; these flieshad black bodies, and much smaller, vestigial wings.Morgan crossed female flies that appeared normal, but(40)carried the mutant genes, with males that exhibited themutations. He expected the offspring to include equalnumbers of gray flies with normal wings, black flieswith vestigial wings, gray flies with vestigial wings,and black flies with normal wings. What he found was(45)a disproportionate number of gray flies with normalwings and black flies with vestigial wings, which sug-gested to him that the genes for body color and wingsize are transmitted together from parents to offspringbecause they are located on the same chromosome and(50)must be somehow linked.Additional research conducted by Morgan onD. melanogaster demonstrated that many, often spon-taneous mutations occur across generations. Theseobservations, together with the results of experiments(55)carried out to test his theory on linked genes, ledMorgan to postulate that the location of the genes onthe chromosomes contributes to the likelihood of anygiven gene being transmitted from parent to offspring.This theory of linear arrangement, along with Morgan’s(60)other important contributions to the field of genetics,led to his being awarded the Nobel Prize in Physiologyor Medicine in 1933.Current research exploring the significance oflinked genes reveals that many factors affect the trans-(65)mission of certain traits from parents to offspring. Thelocation of genes on a particular chromosome is but oneof a multitude of determinants involved in whether ornot a characteristic will be inherited.Q.The passage states that a hereditary unit is called

Top Courses for ACT

Eukaryotic cells, cells that contain membrane-bound organelles and generally reside within multicellular organisms, contain DNA, or deoxyribonucleic acid, which is organized into chromosomes. DNA is a double-stranded nucleic acid that forms a double helix. The bases found within a DNA molecule are adenine (A), thymine (T), guanine (G), and cytosine (C). DNA is organized into functional units, called genes, that encode the basic traits and characteristics of living organisms. DNA can be replicated within the nucleus prior to cell division to ensure each daughter cell receives an identical copy of DNA. The central dogma of molecular biology states that DNA is transcribed to RNA which is then translated into protein. RNA, or ribonucleic acid, is a nucleic acid found in all cells that serves a messenger to carry the genetic code from DNA to produce a functional molecule, the protein. RNA is a single-stranded nucleic acid and consists of the bases adenine (A), uracil (U), guanine (G), and cytosine (C). RNA is translated into amino acids on the ribosome to produce a polypeptide chain, or a protein. There are two general hypotheses for the original evolutionary molecule. The “RNA world” hypothesis states that the original genetic molecule is RNA, and RNA was able to be translated into protein and reverse transcribed to produce DNA. Alternatively, the “DNA, RNA, and Protein World” suggests that DNA was the original genetic molecule and was responsible for subsequent production of RNA and protein.Q. A new organism is identified and the only nucleic acid contained within its cells is RNA. Which hypothesis would be supported by such a finding?a)RNA Worldb)DNA, RNA, Protein Worldc)Transcriptiond)The Central DogmaCorrect answer is option 'A'. Can you explain this answer?
Question Description
Eukaryotic cells, cells that contain membrane-bound organelles and generally reside within multicellular organisms, contain DNA, or deoxyribonucleic acid, which is organized into chromosomes. DNA is a double-stranded nucleic acid that forms a double helix. The bases found within a DNA molecule are adenine (A), thymine (T), guanine (G), and cytosine (C). DNA is organized into functional units, called genes, that encode the basic traits and characteristics of living organisms. DNA can be replicated within the nucleus prior to cell division to ensure each daughter cell receives an identical copy of DNA. The central dogma of molecular biology states that DNA is transcribed to RNA which is then translated into protein. RNA, or ribonucleic acid, is a nucleic acid found in all cells that serves a messenger to carry the genetic code from DNA to produce a functional molecule, the protein. RNA is a single-stranded nucleic acid and consists of the bases adenine (A), uracil (U), guanine (G), and cytosine (C). RNA is translated into amino acids on the ribosome to produce a polypeptide chain, or a protein. There are two general hypotheses for the original evolutionary molecule. The “RNA world” hypothesis states that the original genetic molecule is RNA, and RNA was able to be translated into protein and reverse transcribed to produce DNA. Alternatively, the “DNA, RNA, and Protein World” suggests that DNA was the original genetic molecule and was responsible for subsequent production of RNA and protein.Q. A new organism is identified and the only nucleic acid contained within its cells is RNA. Which hypothesis would be supported by such a finding?a)RNA Worldb)DNA, RNA, Protein Worldc)Transcriptiond)The Central DogmaCorrect answer is option 'A'. Can you explain this answer? for ACT 2025 is part of ACT preparation. The Question and answers have been prepared according to the ACT exam syllabus. Information about Eukaryotic cells, cells that contain membrane-bound organelles and generally reside within multicellular organisms, contain DNA, or deoxyribonucleic acid, which is organized into chromosomes. DNA is a double-stranded nucleic acid that forms a double helix. The bases found within a DNA molecule are adenine (A), thymine (T), guanine (G), and cytosine (C). DNA is organized into functional units, called genes, that encode the basic traits and characteristics of living organisms. DNA can be replicated within the nucleus prior to cell division to ensure each daughter cell receives an identical copy of DNA. The central dogma of molecular biology states that DNA is transcribed to RNA which is then translated into protein. RNA, or ribonucleic acid, is a nucleic acid found in all cells that serves a messenger to carry the genetic code from DNA to produce a functional molecule, the protein. RNA is a single-stranded nucleic acid and consists of the bases adenine (A), uracil (U), guanine (G), and cytosine (C). RNA is translated into amino acids on the ribosome to produce a polypeptide chain, or a protein. There are two general hypotheses for the original evolutionary molecule. The “RNA world” hypothesis states that the original genetic molecule is RNA, and RNA was able to be translated into protein and reverse transcribed to produce DNA. Alternatively, the “DNA, RNA, and Protein World” suggests that DNA was the original genetic molecule and was responsible for subsequent production of RNA and protein.Q. A new organism is identified and the only nucleic acid contained within its cells is RNA. Which hypothesis would be supported by such a finding?a)RNA Worldb)DNA, RNA, Protein Worldc)Transcriptiond)The Central DogmaCorrect answer is option 'A'. Can you explain this answer? covers all topics & solutions for ACT 2025 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for Eukaryotic cells, cells that contain membrane-bound organelles and generally reside within multicellular organisms, contain DNA, or deoxyribonucleic acid, which is organized into chromosomes. DNA is a double-stranded nucleic acid that forms a double helix. The bases found within a DNA molecule are adenine (A), thymine (T), guanine (G), and cytosine (C). DNA is organized into functional units, called genes, that encode the basic traits and characteristics of living organisms. DNA can be replicated within the nucleus prior to cell division to ensure each daughter cell receives an identical copy of DNA. The central dogma of molecular biology states that DNA is transcribed to RNA which is then translated into protein. RNA, or ribonucleic acid, is a nucleic acid found in all cells that serves a messenger to carry the genetic code from DNA to produce a functional molecule, the protein. RNA is a single-stranded nucleic acid and consists of the bases adenine (A), uracil (U), guanine (G), and cytosine (C). RNA is translated into amino acids on the ribosome to produce a polypeptide chain, or a protein. There are two general hypotheses for the original evolutionary molecule. The “RNA world” hypothesis states that the original genetic molecule is RNA, and RNA was able to be translated into protein and reverse transcribed to produce DNA. Alternatively, the “DNA, RNA, and Protein World” suggests that DNA was the original genetic molecule and was responsible for subsequent production of RNA and protein.Q. A new organism is identified and the only nucleic acid contained within its cells is RNA. Which hypothesis would be supported by such a finding?a)RNA Worldb)DNA, RNA, Protein Worldc)Transcriptiond)The Central DogmaCorrect answer is option 'A'. Can you explain this answer?.
Solutions for Eukaryotic cells, cells that contain membrane-bound organelles and generally reside within multicellular organisms, contain DNA, or deoxyribonucleic acid, which is organized into chromosomes. DNA is a double-stranded nucleic acid that forms a double helix. The bases found within a DNA molecule are adenine (A), thymine (T), guanine (G), and cytosine (C). DNA is organized into functional units, called genes, that encode the basic traits and characteristics of living organisms. DNA can be replicated within the nucleus prior to cell division to ensure each daughter cell receives an identical copy of DNA. The central dogma of molecular biology states that DNA is transcribed to RNA which is then translated into protein. RNA, or ribonucleic acid, is a nucleic acid found in all cells that serves a messenger to carry the genetic code from DNA to produce a functional molecule, the protein. RNA is a single-stranded nucleic acid and consists of the bases adenine (A), uracil (U), guanine (G), and cytosine (C). RNA is translated into amino acids on the ribosome to produce a polypeptide chain, or a protein. There are two general hypotheses for the original evolutionary molecule. The “RNA world” hypothesis states that the original genetic molecule is RNA, and RNA was able to be translated into protein and reverse transcribed to produce DNA. Alternatively, the “DNA, RNA, and Protein World” suggests that DNA was the original genetic molecule and was responsible for subsequent production of RNA and protein.Q. A new organism is identified and the only nucleic acid contained within its cells is RNA. Which hypothesis would be supported by such a finding?a)RNA Worldb)DNA, RNA, Protein Worldc)Transcriptiond)The Central DogmaCorrect answer is option 'A'. Can you explain this answer? in English & in Hindi are available as part of our courses for ACT. Download more important topics, notes, lectures and mock test series for ACT Exam by signing up for free.
Here you can find the meaning of Eukaryotic cells, cells that contain membrane-bound organelles and generally reside within multicellular organisms, contain DNA, or deoxyribonucleic acid, which is organized into chromosomes. DNA is a double-stranded nucleic acid that forms a double helix. The bases found within a DNA molecule are adenine (A), thymine (T), guanine (G), and cytosine (C). DNA is organized into functional units, called genes, that encode the basic traits and characteristics of living organisms. DNA can be replicated within the nucleus prior to cell division to ensure each daughter cell receives an identical copy of DNA. The central dogma of molecular biology states that DNA is transcribed to RNA which is then translated into protein. RNA, or ribonucleic acid, is a nucleic acid found in all cells that serves a messenger to carry the genetic code from DNA to produce a functional molecule, the protein. RNA is a single-stranded nucleic acid and consists of the bases adenine (A), uracil (U), guanine (G), and cytosine (C). RNA is translated into amino acids on the ribosome to produce a polypeptide chain, or a protein. There are two general hypotheses for the original evolutionary molecule. The “RNA world” hypothesis states that the original genetic molecule is RNA, and RNA was able to be translated into protein and reverse transcribed to produce DNA. Alternatively, the “DNA, RNA, and Protein World” suggests that DNA was the original genetic molecule and was responsible for subsequent production of RNA and protein.Q. A new organism is identified and the only nucleic acid contained within its cells is RNA. Which hypothesis would be supported by such a finding?a)RNA Worldb)DNA, RNA, Protein Worldc)Transcriptiond)The Central DogmaCorrect answer is option 'A'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of Eukaryotic cells, cells that contain membrane-bound organelles and generally reside within multicellular organisms, contain DNA, or deoxyribonucleic acid, which is organized into chromosomes. DNA is a double-stranded nucleic acid that forms a double helix. The bases found within a DNA molecule are adenine (A), thymine (T), guanine (G), and cytosine (C). DNA is organized into functional units, called genes, that encode the basic traits and characteristics of living organisms. DNA can be replicated within the nucleus prior to cell division to ensure each daughter cell receives an identical copy of DNA. The central dogma of molecular biology states that DNA is transcribed to RNA which is then translated into protein. RNA, or ribonucleic acid, is a nucleic acid found in all cells that serves a messenger to carry the genetic code from DNA to produce a functional molecule, the protein. RNA is a single-stranded nucleic acid and consists of the bases adenine (A), uracil (U), guanine (G), and cytosine (C). RNA is translated into amino acids on the ribosome to produce a polypeptide chain, or a protein. There are two general hypotheses for the original evolutionary molecule. The “RNA world” hypothesis states that the original genetic molecule is RNA, and RNA was able to be translated into protein and reverse transcribed to produce DNA. Alternatively, the “DNA, RNA, and Protein World” suggests that DNA was the original genetic molecule and was responsible for subsequent production of RNA and protein.Q. A new organism is identified and the only nucleic acid contained within its cells is RNA. Which hypothesis would be supported by such a finding?a)RNA Worldb)DNA, RNA, Protein Worldc)Transcriptiond)The Central DogmaCorrect answer is option 'A'. Can you explain this answer?, a detailed solution for Eukaryotic cells, cells that contain membrane-bound organelles and generally reside within multicellular organisms, contain DNA, or deoxyribonucleic acid, which is organized into chromosomes. DNA is a double-stranded nucleic acid that forms a double helix. The bases found within a DNA molecule are adenine (A), thymine (T), guanine (G), and cytosine (C). DNA is organized into functional units, called genes, that encode the basic traits and characteristics of living organisms. DNA can be replicated within the nucleus prior to cell division to ensure each daughter cell receives an identical copy of DNA. The central dogma of molecular biology states that DNA is transcribed to RNA which is then translated into protein. RNA, or ribonucleic acid, is a nucleic acid found in all cells that serves a messenger to carry the genetic code from DNA to produce a functional molecule, the protein. RNA is a single-stranded nucleic acid and consists of the bases adenine (A), uracil (U), guanine (G), and cytosine (C). RNA is translated into amino acids on the ribosome to produce a polypeptide chain, or a protein. There are two general hypotheses for the original evolutionary molecule. The “RNA world” hypothesis states that the original genetic molecule is RNA, and RNA was able to be translated into protein and reverse transcribed to produce DNA. Alternatively, the “DNA, RNA, and Protein World” suggests that DNA was the original genetic molecule and was responsible for subsequent production of RNA and protein.Q. A new organism is identified and the only nucleic acid contained within its cells is RNA. Which hypothesis would be supported by such a finding?a)RNA Worldb)DNA, RNA, Protein Worldc)Transcriptiond)The Central DogmaCorrect answer is option 'A'. Can you explain this answer? has been provided alongside types of Eukaryotic cells, cells that contain membrane-bound organelles and generally reside within multicellular organisms, contain DNA, or deoxyribonucleic acid, which is organized into chromosomes. DNA is a double-stranded nucleic acid that forms a double helix. The bases found within a DNA molecule are adenine (A), thymine (T), guanine (G), and cytosine (C). DNA is organized into functional units, called genes, that encode the basic traits and characteristics of living organisms. DNA can be replicated within the nucleus prior to cell division to ensure each daughter cell receives an identical copy of DNA. The central dogma of molecular biology states that DNA is transcribed to RNA which is then translated into protein. RNA, or ribonucleic acid, is a nucleic acid found in all cells that serves a messenger to carry the genetic code from DNA to produce a functional molecule, the protein. RNA is a single-stranded nucleic acid and consists of the bases adenine (A), uracil (U), guanine (G), and cytosine (C). RNA is translated into amino acids on the ribosome to produce a polypeptide chain, or a protein. There are two general hypotheses for the original evolutionary molecule. The “RNA world” hypothesis states that the original genetic molecule is RNA, and RNA was able to be translated into protein and reverse transcribed to produce DNA. Alternatively, the “DNA, RNA, and Protein World” suggests that DNA was the original genetic molecule and was responsible for subsequent production of RNA and protein.Q. A new organism is identified and the only nucleic acid contained within its cells is RNA. Which hypothesis would be supported by such a finding?a)RNA Worldb)DNA, RNA, Protein Worldc)Transcriptiond)The Central DogmaCorrect answer is option 'A'. Can you explain this answer? theory, EduRev gives you an ample number of questions to practice Eukaryotic cells, cells that contain membrane-bound organelles and generally reside within multicellular organisms, contain DNA, or deoxyribonucleic acid, which is organized into chromosomes. DNA is a double-stranded nucleic acid that forms a double helix. The bases found within a DNA molecule are adenine (A), thymine (T), guanine (G), and cytosine (C). DNA is organized into functional units, called genes, that encode the basic traits and characteristics of living organisms. DNA can be replicated within the nucleus prior to cell division to ensure each daughter cell receives an identical copy of DNA. The central dogma of molecular biology states that DNA is transcribed to RNA which is then translated into protein. RNA, or ribonucleic acid, is a nucleic acid found in all cells that serves a messenger to carry the genetic code from DNA to produce a functional molecule, the protein. RNA is a single-stranded nucleic acid and consists of the bases adenine (A), uracil (U), guanine (G), and cytosine (C). RNA is translated into amino acids on the ribosome to produce a polypeptide chain, or a protein. There are two general hypotheses for the original evolutionary molecule. The “RNA world” hypothesis states that the original genetic molecule is RNA, and RNA was able to be translated into protein and reverse transcribed to produce DNA. Alternatively, the “DNA, RNA, and Protein World” suggests that DNA was the original genetic molecule and was responsible for subsequent production of RNA and protein.Q. A new organism is identified and the only nucleic acid contained within its cells is RNA. Which hypothesis would be supported by such a finding?a)RNA Worldb)DNA, RNA, Protein Worldc)Transcriptiond)The Central DogmaCorrect answer is option 'A'. Can you explain this answer? tests, examples and also practice ACT tests.
Explore Courses for ACT exam

Top Courses for ACT

Explore Courses
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev