GMAT Exam  >  GMAT Questions  >  Protein synthesis begins when the gene encodi... Start Learning for Free
Protein synthesis begins when the gene encoding a protein is activated. The gene’s sequence of nucleotides is transcribed into a molecule of messenger RNA (mRNA), which reproduces the information contained in that sequence. Transported outside the nucleus to the cytoplasm, the mRNA is translated into the protein it encodes by an organelle known as a ribosome, which strings together amino acids in the order specified by the sequence of elements in the mRNA molecule. Since the amount of mRNA in a cell determines the amount of the corresponding protein, factors affecting the abundance of mRNA’s play a major part in the normal functioning of a cell by appropriately regulating protein synthesis. For example, an excess of certain proteins can cause cells to proliferate abnormally and become cancerous; a lack of the protein insulin results in diabetes.

Biologists once assumed that the variable rates at which cells synthesize different mRNA’s determine the quantities of mRNA’s and their corresponding proteins in a cell. However, recent investigations have shown that the concentrations of most mRNA’s correlate best, not with their synthesis rate, but rather with the equally variable rates at which cells degrade the different mRNA’s in their cytoplasm. If a cell degrades both a rapidly and a slowly synthesized mRNA slowly, both mRNA’s will accumulate to high levels.

An important example of this phenomenon is the development of red blood cells from their unspecialized parent cells in bone marrow. For red blood cells to accumulate sufficient concentrations of hemoglobin (which transports oxygen) to carry out their main function, the cells’ parent cells must simultaneously produce more of the constituent proteins of hemoglobin and less of most other proteins. To do this, the parent cells halt synthesis of non-hemoglobin mRNA’s in the nucleus and rapidly degrade copies of the non-hemoglobin mRNA’s remaining in the cytoplasm. Halting synthesis of mRNA alone would not affect the quantities of proteins synthesized by the mRNA’s still existing in the cytoplasm. Biologists now believe that most cells can regulate protein production most efficiently by varying both mRNA synthesis and degradation, as developing red cells do, rather than by just varying one or the other.
The passage is primarily concerned with discussing the
  • a)
    influence of mRNA concentrations on the development of red blood cells
  • b)
    role of the synthesis and degradation of mRNA in cell functioning
  • c)
    mechanism by which genes are transcribed into mRNA
  • d)
    differences in mRNA concentrations in cell nuclei and in the cytoplasm
  • e)
    way in which mRNA synthesis contributes to the onset of diabetes
Correct answer is option 'B'. Can you explain this answer?
Most Upvoted Answer
Protein synthesis begins when the gene encoding a protein is activated...
The passage is primarily concerned with discussing the:
(B) role of the synthesis and degradation of mRNA in cell functioning
Explanation:
The passage explores how the concentration of mRNA in a cell is influenced by both its synthesis and degradation rates. It emphasizes that recent investigations have revealed the importance of mRNA degradation rates in addition to synthesis rates in regulating protein production. The example of red blood cell development illustrates how cells manage both mRNA synthesis and degradation to control protein levels effectively.
  • (A) is incorrect because the passage uses red blood cells as an example but does not primarily focus on their development or the influence of mRNA concentrations on this process.
  • (C) is incorrect as the passage does not discuss the mechanism of gene transcription into mRNA.
  • (D) is incorrect because the passage does not focus on differences in mRNA concentrations between the nucleus and the cytoplasm.
  • (E) is incorrect because the passage does not address how mRNA synthesis contributes to the onset of diabetes.
Thus, the passage's central theme is the role of mRNA synthesis and degradation in regulating cell functioning, making (B) the best answer.
Free Test
Community Answer
Protein synthesis begins when the gene encoding a protein is activated...
Overview of the Passage
The passage primarily discusses how mRNA synthesis and degradation influence protein production in cells, emphasizing their role in cellular functioning.
Key Focus: Role of mRNA
- The passage highlights that the regulation of protein synthesis is not solely determined by the rate of mRNA synthesis, but significantly by the degradation rates of mRNA.
- It mentions that mRNA concentrations correlate more with degradation rates than with synthesis rates.
Red Blood Cell Development Example
- The development of red blood cells is used as a pivotal example:
- Parent cells in bone marrow increase hemoglobin production by halting non-hemoglobin mRNA synthesis.
- They actively degrade existing non-hemoglobin mRNA to ensure that the focus remains on producing hemoglobin.
Conclusion of Findings
- The passage concludes that efficient regulation of protein production involves a balance of both mRNA synthesis and degradation.
- This dual approach allows cells to manage protein levels effectively, which is crucial for normal functions and preventing conditions such as cancer or diabetes.
Final Insight
In summary, the passage emphasizes that understanding the interplay of mRNA synthesis and degradation is vital for comprehending cellular functionality, making option 'B' the correct answer.
Attention GMAT Students!
To make sure you are not studying endlessly, EduRev has designed GMAT study material, with Structured Courses, Videos, & Test Series. Plus get personalized analysis, doubt solving and improvement plans to achieve a great score in GMAT.
Explore Courses for GMAT exam

Similar GMAT Doubts

Top Courses for GMAT

Protein synthesis begins when the gene encoding a protein is activated. The gene’s sequence of nucleotides is transcribed into a molecule of messenger RNA (mRNA), which reproduces the information contained in that sequence. Transported outside the nucleus to the cytoplasm, the mRNA is translated into the protein it encodes by an organelle known as a ribosome, which strings together amino acids in the order specified by the sequence of elements in the mRNA molecule. Since the amount of mRNA in a cell determines the amount of the corresponding protein, factors affecting the abundance of mRNA’s play a major part in the normal functioning of a cell by appropriately regulating protein synthesis. For example, an excess of certain proteins can cause cells to proliferate abnormally and become cancerous; a lack of the protein insulin results in diabetes.Biologists once assumed that the variable rates at which cells synthesize different mRNA’s determine the quantities of mRNA’s and their corresponding proteins in a cell. However, recent investigations have shown that the concentrations of most mRNA’s correlate best, not with their synthesis rate, but rather with the equally variable rates at which cells degrade the different mRNA’s in their cytoplasm. If a cell degrades both a rapidly and a slowly synthesized mRNA slowly, both mRNA’s will accumulate to high levels.An important example of this phenomenon is the development of red blood cells from their unspecialized parent cells in bone marrow. For red blood cells to accumulate sufficient concentrations of hemoglobin (which transports oxygen) to carry out their main function, the cells’ parent cells must simultaneously produce more of the constituent proteins of hemoglobin and less of most other proteins. To do this, the parent cells halt synthesis of non-hemoglobin mRNA’s in the nucleus and rapidly degrade copies of the non-hemoglobin mRNA’s remaining in the cytoplasm. Halting synthesis of mRNA alone would not affect the quantities of proteins synthesized by the mRNA’s still existing in the cytoplasm. Biologists now believe that most cells can regulate protein production most efficiently by varying both mRNA synthesis and degradation, as developing red cells do, rather than by just varying one or the other.The passage is primarily concerned with discussing thea)influence of mRNA concentrations on the development of red blood cellsb)role of the synthesis and degradation of mRNA in cell functioningc)mechanism by which genes are transcribed into mRNAd)differences in mRNA concentrations in cell nuclei and in the cytoplasme)way in which mRNA synthesis contributes to the onset of diabetesCorrect answer is option 'B'. Can you explain this answer?
Question Description
Protein synthesis begins when the gene encoding a protein is activated. The gene’s sequence of nucleotides is transcribed into a molecule of messenger RNA (mRNA), which reproduces the information contained in that sequence. Transported outside the nucleus to the cytoplasm, the mRNA is translated into the protein it encodes by an organelle known as a ribosome, which strings together amino acids in the order specified by the sequence of elements in the mRNA molecule. Since the amount of mRNA in a cell determines the amount of the corresponding protein, factors affecting the abundance of mRNA’s play a major part in the normal functioning of a cell by appropriately regulating protein synthesis. For example, an excess of certain proteins can cause cells to proliferate abnormally and become cancerous; a lack of the protein insulin results in diabetes.Biologists once assumed that the variable rates at which cells synthesize different mRNA’s determine the quantities of mRNA’s and their corresponding proteins in a cell. However, recent investigations have shown that the concentrations of most mRNA’s correlate best, not with their synthesis rate, but rather with the equally variable rates at which cells degrade the different mRNA’s in their cytoplasm. If a cell degrades both a rapidly and a slowly synthesized mRNA slowly, both mRNA’s will accumulate to high levels.An important example of this phenomenon is the development of red blood cells from their unspecialized parent cells in bone marrow. For red blood cells to accumulate sufficient concentrations of hemoglobin (which transports oxygen) to carry out their main function, the cells’ parent cells must simultaneously produce more of the constituent proteins of hemoglobin and less of most other proteins. To do this, the parent cells halt synthesis of non-hemoglobin mRNA’s in the nucleus and rapidly degrade copies of the non-hemoglobin mRNA’s remaining in the cytoplasm. Halting synthesis of mRNA alone would not affect the quantities of proteins synthesized by the mRNA’s still existing in the cytoplasm. Biologists now believe that most cells can regulate protein production most efficiently by varying both mRNA synthesis and degradation, as developing red cells do, rather than by just varying one or the other.The passage is primarily concerned with discussing thea)influence of mRNA concentrations on the development of red blood cellsb)role of the synthesis and degradation of mRNA in cell functioningc)mechanism by which genes are transcribed into mRNAd)differences in mRNA concentrations in cell nuclei and in the cytoplasme)way in which mRNA synthesis contributes to the onset of diabetesCorrect answer is option 'B'. Can you explain this answer? for GMAT 2024 is part of GMAT preparation. The Question and answers have been prepared according to the GMAT exam syllabus. Information about Protein synthesis begins when the gene encoding a protein is activated. The gene’s sequence of nucleotides is transcribed into a molecule of messenger RNA (mRNA), which reproduces the information contained in that sequence. Transported outside the nucleus to the cytoplasm, the mRNA is translated into the protein it encodes by an organelle known as a ribosome, which strings together amino acids in the order specified by the sequence of elements in the mRNA molecule. Since the amount of mRNA in a cell determines the amount of the corresponding protein, factors affecting the abundance of mRNA’s play a major part in the normal functioning of a cell by appropriately regulating protein synthesis. For example, an excess of certain proteins can cause cells to proliferate abnormally and become cancerous; a lack of the protein insulin results in diabetes.Biologists once assumed that the variable rates at which cells synthesize different mRNA’s determine the quantities of mRNA’s and their corresponding proteins in a cell. However, recent investigations have shown that the concentrations of most mRNA’s correlate best, not with their synthesis rate, but rather with the equally variable rates at which cells degrade the different mRNA’s in their cytoplasm. If a cell degrades both a rapidly and a slowly synthesized mRNA slowly, both mRNA’s will accumulate to high levels.An important example of this phenomenon is the development of red blood cells from their unspecialized parent cells in bone marrow. For red blood cells to accumulate sufficient concentrations of hemoglobin (which transports oxygen) to carry out their main function, the cells’ parent cells must simultaneously produce more of the constituent proteins of hemoglobin and less of most other proteins. To do this, the parent cells halt synthesis of non-hemoglobin mRNA’s in the nucleus and rapidly degrade copies of the non-hemoglobin mRNA’s remaining in the cytoplasm. Halting synthesis of mRNA alone would not affect the quantities of proteins synthesized by the mRNA’s still existing in the cytoplasm. Biologists now believe that most cells can regulate protein production most efficiently by varying both mRNA synthesis and degradation, as developing red cells do, rather than by just varying one or the other.The passage is primarily concerned with discussing thea)influence of mRNA concentrations on the development of red blood cellsb)role of the synthesis and degradation of mRNA in cell functioningc)mechanism by which genes are transcribed into mRNAd)differences in mRNA concentrations in cell nuclei and in the cytoplasme)way in which mRNA synthesis contributes to the onset of diabetesCorrect answer is option 'B'. Can you explain this answer? covers all topics & solutions for GMAT 2024 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for Protein synthesis begins when the gene encoding a protein is activated. The gene’s sequence of nucleotides is transcribed into a molecule of messenger RNA (mRNA), which reproduces the information contained in that sequence. Transported outside the nucleus to the cytoplasm, the mRNA is translated into the protein it encodes by an organelle known as a ribosome, which strings together amino acids in the order specified by the sequence of elements in the mRNA molecule. Since the amount of mRNA in a cell determines the amount of the corresponding protein, factors affecting the abundance of mRNA’s play a major part in the normal functioning of a cell by appropriately regulating protein synthesis. For example, an excess of certain proteins can cause cells to proliferate abnormally and become cancerous; a lack of the protein insulin results in diabetes.Biologists once assumed that the variable rates at which cells synthesize different mRNA’s determine the quantities of mRNA’s and their corresponding proteins in a cell. However, recent investigations have shown that the concentrations of most mRNA’s correlate best, not with their synthesis rate, but rather with the equally variable rates at which cells degrade the different mRNA’s in their cytoplasm. If a cell degrades both a rapidly and a slowly synthesized mRNA slowly, both mRNA’s will accumulate to high levels.An important example of this phenomenon is the development of red blood cells from their unspecialized parent cells in bone marrow. For red blood cells to accumulate sufficient concentrations of hemoglobin (which transports oxygen) to carry out their main function, the cells’ parent cells must simultaneously produce more of the constituent proteins of hemoglobin and less of most other proteins. To do this, the parent cells halt synthesis of non-hemoglobin mRNA’s in the nucleus and rapidly degrade copies of the non-hemoglobin mRNA’s remaining in the cytoplasm. Halting synthesis of mRNA alone would not affect the quantities of proteins synthesized by the mRNA’s still existing in the cytoplasm. Biologists now believe that most cells can regulate protein production most efficiently by varying both mRNA synthesis and degradation, as developing red cells do, rather than by just varying one or the other.The passage is primarily concerned with discussing thea)influence of mRNA concentrations on the development of red blood cellsb)role of the synthesis and degradation of mRNA in cell functioningc)mechanism by which genes are transcribed into mRNAd)differences in mRNA concentrations in cell nuclei and in the cytoplasme)way in which mRNA synthesis contributes to the onset of diabetesCorrect answer is option 'B'. Can you explain this answer?.
Solutions for Protein synthesis begins when the gene encoding a protein is activated. The gene’s sequence of nucleotides is transcribed into a molecule of messenger RNA (mRNA), which reproduces the information contained in that sequence. Transported outside the nucleus to the cytoplasm, the mRNA is translated into the protein it encodes by an organelle known as a ribosome, which strings together amino acids in the order specified by the sequence of elements in the mRNA molecule. Since the amount of mRNA in a cell determines the amount of the corresponding protein, factors affecting the abundance of mRNA’s play a major part in the normal functioning of a cell by appropriately regulating protein synthesis. For example, an excess of certain proteins can cause cells to proliferate abnormally and become cancerous; a lack of the protein insulin results in diabetes.Biologists once assumed that the variable rates at which cells synthesize different mRNA’s determine the quantities of mRNA’s and their corresponding proteins in a cell. However, recent investigations have shown that the concentrations of most mRNA’s correlate best, not with their synthesis rate, but rather with the equally variable rates at which cells degrade the different mRNA’s in their cytoplasm. If a cell degrades both a rapidly and a slowly synthesized mRNA slowly, both mRNA’s will accumulate to high levels.An important example of this phenomenon is the development of red blood cells from their unspecialized parent cells in bone marrow. For red blood cells to accumulate sufficient concentrations of hemoglobin (which transports oxygen) to carry out their main function, the cells’ parent cells must simultaneously produce more of the constituent proteins of hemoglobin and less of most other proteins. To do this, the parent cells halt synthesis of non-hemoglobin mRNA’s in the nucleus and rapidly degrade copies of the non-hemoglobin mRNA’s remaining in the cytoplasm. Halting synthesis of mRNA alone would not affect the quantities of proteins synthesized by the mRNA’s still existing in the cytoplasm. Biologists now believe that most cells can regulate protein production most efficiently by varying both mRNA synthesis and degradation, as developing red cells do, rather than by just varying one or the other.The passage is primarily concerned with discussing thea)influence of mRNA concentrations on the development of red blood cellsb)role of the synthesis and degradation of mRNA in cell functioningc)mechanism by which genes are transcribed into mRNAd)differences in mRNA concentrations in cell nuclei and in the cytoplasme)way in which mRNA synthesis contributes to the onset of diabetesCorrect answer is option 'B'. Can you explain this answer? in English & in Hindi are available as part of our courses for GMAT. Download more important topics, notes, lectures and mock test series for GMAT Exam by signing up for free.
Here you can find the meaning of Protein synthesis begins when the gene encoding a protein is activated. The gene’s sequence of nucleotides is transcribed into a molecule of messenger RNA (mRNA), which reproduces the information contained in that sequence. Transported outside the nucleus to the cytoplasm, the mRNA is translated into the protein it encodes by an organelle known as a ribosome, which strings together amino acids in the order specified by the sequence of elements in the mRNA molecule. Since the amount of mRNA in a cell determines the amount of the corresponding protein, factors affecting the abundance of mRNA’s play a major part in the normal functioning of a cell by appropriately regulating protein synthesis. For example, an excess of certain proteins can cause cells to proliferate abnormally and become cancerous; a lack of the protein insulin results in diabetes.Biologists once assumed that the variable rates at which cells synthesize different mRNA’s determine the quantities of mRNA’s and their corresponding proteins in a cell. However, recent investigations have shown that the concentrations of most mRNA’s correlate best, not with their synthesis rate, but rather with the equally variable rates at which cells degrade the different mRNA’s in their cytoplasm. If a cell degrades both a rapidly and a slowly synthesized mRNA slowly, both mRNA’s will accumulate to high levels.An important example of this phenomenon is the development of red blood cells from their unspecialized parent cells in bone marrow. For red blood cells to accumulate sufficient concentrations of hemoglobin (which transports oxygen) to carry out their main function, the cells’ parent cells must simultaneously produce more of the constituent proteins of hemoglobin and less of most other proteins. To do this, the parent cells halt synthesis of non-hemoglobin mRNA’s in the nucleus and rapidly degrade copies of the non-hemoglobin mRNA’s remaining in the cytoplasm. Halting synthesis of mRNA alone would not affect the quantities of proteins synthesized by the mRNA’s still existing in the cytoplasm. Biologists now believe that most cells can regulate protein production most efficiently by varying both mRNA synthesis and degradation, as developing red cells do, rather than by just varying one or the other.The passage is primarily concerned with discussing thea)influence of mRNA concentrations on the development of red blood cellsb)role of the synthesis and degradation of mRNA in cell functioningc)mechanism by which genes are transcribed into mRNAd)differences in mRNA concentrations in cell nuclei and in the cytoplasme)way in which mRNA synthesis contributes to the onset of diabetesCorrect answer is option 'B'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of Protein synthesis begins when the gene encoding a protein is activated. The gene’s sequence of nucleotides is transcribed into a molecule of messenger RNA (mRNA), which reproduces the information contained in that sequence. Transported outside the nucleus to the cytoplasm, the mRNA is translated into the protein it encodes by an organelle known as a ribosome, which strings together amino acids in the order specified by the sequence of elements in the mRNA molecule. Since the amount of mRNA in a cell determines the amount of the corresponding protein, factors affecting the abundance of mRNA’s play a major part in the normal functioning of a cell by appropriately regulating protein synthesis. For example, an excess of certain proteins can cause cells to proliferate abnormally and become cancerous; a lack of the protein insulin results in diabetes.Biologists once assumed that the variable rates at which cells synthesize different mRNA’s determine the quantities of mRNA’s and their corresponding proteins in a cell. However, recent investigations have shown that the concentrations of most mRNA’s correlate best, not with their synthesis rate, but rather with the equally variable rates at which cells degrade the different mRNA’s in their cytoplasm. If a cell degrades both a rapidly and a slowly synthesized mRNA slowly, both mRNA’s will accumulate to high levels.An important example of this phenomenon is the development of red blood cells from their unspecialized parent cells in bone marrow. For red blood cells to accumulate sufficient concentrations of hemoglobin (which transports oxygen) to carry out their main function, the cells’ parent cells must simultaneously produce more of the constituent proteins of hemoglobin and less of most other proteins. To do this, the parent cells halt synthesis of non-hemoglobin mRNA’s in the nucleus and rapidly degrade copies of the non-hemoglobin mRNA’s remaining in the cytoplasm. Halting synthesis of mRNA alone would not affect the quantities of proteins synthesized by the mRNA’s still existing in the cytoplasm. Biologists now believe that most cells can regulate protein production most efficiently by varying both mRNA synthesis and degradation, as developing red cells do, rather than by just varying one or the other.The passage is primarily concerned with discussing thea)influence of mRNA concentrations on the development of red blood cellsb)role of the synthesis and degradation of mRNA in cell functioningc)mechanism by which genes are transcribed into mRNAd)differences in mRNA concentrations in cell nuclei and in the cytoplasme)way in which mRNA synthesis contributes to the onset of diabetesCorrect answer is option 'B'. Can you explain this answer?, a detailed solution for Protein synthesis begins when the gene encoding a protein is activated. The gene’s sequence of nucleotides is transcribed into a molecule of messenger RNA (mRNA), which reproduces the information contained in that sequence. Transported outside the nucleus to the cytoplasm, the mRNA is translated into the protein it encodes by an organelle known as a ribosome, which strings together amino acids in the order specified by the sequence of elements in the mRNA molecule. Since the amount of mRNA in a cell determines the amount of the corresponding protein, factors affecting the abundance of mRNA’s play a major part in the normal functioning of a cell by appropriately regulating protein synthesis. For example, an excess of certain proteins can cause cells to proliferate abnormally and become cancerous; a lack of the protein insulin results in diabetes.Biologists once assumed that the variable rates at which cells synthesize different mRNA’s determine the quantities of mRNA’s and their corresponding proteins in a cell. However, recent investigations have shown that the concentrations of most mRNA’s correlate best, not with their synthesis rate, but rather with the equally variable rates at which cells degrade the different mRNA’s in their cytoplasm. If a cell degrades both a rapidly and a slowly synthesized mRNA slowly, both mRNA’s will accumulate to high levels.An important example of this phenomenon is the development of red blood cells from their unspecialized parent cells in bone marrow. For red blood cells to accumulate sufficient concentrations of hemoglobin (which transports oxygen) to carry out their main function, the cells’ parent cells must simultaneously produce more of the constituent proteins of hemoglobin and less of most other proteins. To do this, the parent cells halt synthesis of non-hemoglobin mRNA’s in the nucleus and rapidly degrade copies of the non-hemoglobin mRNA’s remaining in the cytoplasm. Halting synthesis of mRNA alone would not affect the quantities of proteins synthesized by the mRNA’s still existing in the cytoplasm. Biologists now believe that most cells can regulate protein production most efficiently by varying both mRNA synthesis and degradation, as developing red cells do, rather than by just varying one or the other.The passage is primarily concerned with discussing thea)influence of mRNA concentrations on the development of red blood cellsb)role of the synthesis and degradation of mRNA in cell functioningc)mechanism by which genes are transcribed into mRNAd)differences in mRNA concentrations in cell nuclei and in the cytoplasme)way in which mRNA synthesis contributes to the onset of diabetesCorrect answer is option 'B'. Can you explain this answer? has been provided alongside types of Protein synthesis begins when the gene encoding a protein is activated. The gene’s sequence of nucleotides is transcribed into a molecule of messenger RNA (mRNA), which reproduces the information contained in that sequence. Transported outside the nucleus to the cytoplasm, the mRNA is translated into the protein it encodes by an organelle known as a ribosome, which strings together amino acids in the order specified by the sequence of elements in the mRNA molecule. Since the amount of mRNA in a cell determines the amount of the corresponding protein, factors affecting the abundance of mRNA’s play a major part in the normal functioning of a cell by appropriately regulating protein synthesis. For example, an excess of certain proteins can cause cells to proliferate abnormally and become cancerous; a lack of the protein insulin results in diabetes.Biologists once assumed that the variable rates at which cells synthesize different mRNA’s determine the quantities of mRNA’s and their corresponding proteins in a cell. However, recent investigations have shown that the concentrations of most mRNA’s correlate best, not with their synthesis rate, but rather with the equally variable rates at which cells degrade the different mRNA’s in their cytoplasm. If a cell degrades both a rapidly and a slowly synthesized mRNA slowly, both mRNA’s will accumulate to high levels.An important example of this phenomenon is the development of red blood cells from their unspecialized parent cells in bone marrow. For red blood cells to accumulate sufficient concentrations of hemoglobin (which transports oxygen) to carry out their main function, the cells’ parent cells must simultaneously produce more of the constituent proteins of hemoglobin and less of most other proteins. To do this, the parent cells halt synthesis of non-hemoglobin mRNA’s in the nucleus and rapidly degrade copies of the non-hemoglobin mRNA’s remaining in the cytoplasm. Halting synthesis of mRNA alone would not affect the quantities of proteins synthesized by the mRNA’s still existing in the cytoplasm. Biologists now believe that most cells can regulate protein production most efficiently by varying both mRNA synthesis and degradation, as developing red cells do, rather than by just varying one or the other.The passage is primarily concerned with discussing thea)influence of mRNA concentrations on the development of red blood cellsb)role of the synthesis and degradation of mRNA in cell functioningc)mechanism by which genes are transcribed into mRNAd)differences in mRNA concentrations in cell nuclei and in the cytoplasme)way in which mRNA synthesis contributes to the onset of diabetesCorrect answer is option 'B'. Can you explain this answer? theory, EduRev gives you an ample number of questions to practice Protein synthesis begins when the gene encoding a protein is activated. The gene’s sequence of nucleotides is transcribed into a molecule of messenger RNA (mRNA), which reproduces the information contained in that sequence. Transported outside the nucleus to the cytoplasm, the mRNA is translated into the protein it encodes by an organelle known as a ribosome, which strings together amino acids in the order specified by the sequence of elements in the mRNA molecule. Since the amount of mRNA in a cell determines the amount of the corresponding protein, factors affecting the abundance of mRNA’s play a major part in the normal functioning of a cell by appropriately regulating protein synthesis. For example, an excess of certain proteins can cause cells to proliferate abnormally and become cancerous; a lack of the protein insulin results in diabetes.Biologists once assumed that the variable rates at which cells synthesize different mRNA’s determine the quantities of mRNA’s and their corresponding proteins in a cell. However, recent investigations have shown that the concentrations of most mRNA’s correlate best, not with their synthesis rate, but rather with the equally variable rates at which cells degrade the different mRNA’s in their cytoplasm. If a cell degrades both a rapidly and a slowly synthesized mRNA slowly, both mRNA’s will accumulate to high levels.An important example of this phenomenon is the development of red blood cells from their unspecialized parent cells in bone marrow. For red blood cells to accumulate sufficient concentrations of hemoglobin (which transports oxygen) to carry out their main function, the cells’ parent cells must simultaneously produce more of the constituent proteins of hemoglobin and less of most other proteins. To do this, the parent cells halt synthesis of non-hemoglobin mRNA’s in the nucleus and rapidly degrade copies of the non-hemoglobin mRNA’s remaining in the cytoplasm. Halting synthesis of mRNA alone would not affect the quantities of proteins synthesized by the mRNA’s still existing in the cytoplasm. Biologists now believe that most cells can regulate protein production most efficiently by varying both mRNA synthesis and degradation, as developing red cells do, rather than by just varying one or the other.The passage is primarily concerned with discussing thea)influence of mRNA concentrations on the development of red blood cellsb)role of the synthesis and degradation of mRNA in cell functioningc)mechanism by which genes are transcribed into mRNAd)differences in mRNA concentrations in cell nuclei and in the cytoplasme)way in which mRNA synthesis contributes to the onset of diabetesCorrect answer is option 'B'. Can you explain this answer? tests, examples and also practice GMAT tests.
Explore Courses for GMAT exam

Top Courses for GMAT

Explore Courses
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev