GMAT Exam  >  GMAT Questions  >  Protein synthesis begins when the gene encodi... Start Learning for Free
Protein synthesis begins when the gene encoding a protein is activated. The gene’s sequence of nucleotides is transcribed into a molecule of messenger RNA (mRNA), which reproduces the information contained in that sequence. Transported outside the nucleus to the cytoplasm, the mRNA is translated into the protein it encodes by an organelle known as a ribosome, which strings together amino acids in the order specified by the sequence of elements in the mRNA molecule. Since the amount of mRNA in a cell determines the amount of the corresponding protein, factors affecting the abundance of mRNA’s play a major part in the normal functioning of a cell by appropriately regulating protein synthesis. For example, an excess of certain proteins can cause cells to proliferate abnormally and become cancerous; a lack of the protein insulin results in diabetes.

Biologists once assumed that the variable rates at which cells synthesize different mRNA’s determine the quantities of mRNA’s and their corresponding proteins in a cell. However, recent investigations have shown that the concentrations of most mRNA’s correlate best, not with their synthesis rate, but rather with the equally variable rates at which cells degrade the different mRNA’s in their cytoplasm. If a cell degrades both a rapidly and a slowly synthesized mRNA slowly, both mRNA’s will accumulate to high levels.

An important example of this phenomenon is the development of red blood cells from their unspecialized parent cells in bone marrow. For red blood cells to accumulate sufficient concentrations of hemoglobin (which transports oxygen) to carry out their main function, the cells’ parent cells must simultaneously produce more of the constituent proteins of hemoglobin and less of most other proteins. To do this, the parent cells halt synthesis of non-hemoglobin mRNA’s in the nucleus and rapidly degrade copies of the non-hemoglobin mRNA’s remaining in the cytoplasm. Halting synthesis of mRNA alone would not affect the quantities of proteins synthesized by the mRNA’s still existing in the cytoplasm. Biologists now believe that most cells can regulate protein production most efficiently by varying both mRNA synthesis and degradation, as developing red cells do, rather than by just varying one or the other.
The passage suggests that a biologist who held the view described in the first sentence of the second paragraph would most probably also have believed which of the following?
  • a)
    The rate of degradation of specific mRNA’s has little effect on protein concentrations.
  • b)
    The rate of degradation of specific mRNA’s should be studied intensively.
  • c)
    The rates of synthesis and degradation for any given mRNA are normally equal.
  • d)
    Different mRNA’s undergo degradation at widely varying rates.
  • e)
    Most mRNA’s degrade very rapidly.
Correct answer is option 'A'. Can you explain this answer?
Most Upvoted Answer
Protein synthesis begins when the gene encoding a protein is activated...
The passage suggests that a biologist who held the view described in the first sentence of the second paragraph would most probably also have believed:
(A) The rate of degradation of specific mRNA’s has little effect on protein concentrations.
Explanation:
The first sentence of the second paragraph states that biologists previously believed the variable rates of mRNA synthesis determined the quantities of mRNA and their corresponding proteins in a cell. This view implies that they did not consider the degradation rates of mRNA to be a significant factor in protein concentrations.
  • (A) is correct because it aligns with the outdated belief that degradation rates were not seen as crucial in determining protein concentrations, which contrasts with the newer understanding that degradation rates are actually important.
  • (B) is incorrect because the previous belief did not emphasize the need to study degradation rates intensively; rather, it underestimated their importance.
  • (C) is incorrect because the previous belief did not suggest that synthesis and degradation rates for any given mRNA are normally equal.
  • (D) is incorrect because the previous belief did not address varying degradation rates for different mRNA’s; it focused on synthesis rates.
  • (E) is incorrect because the passage does not suggest that most mRNA’s degrade very rapidly. Instead, it highlights that degradation rates can vary and affect mRNA concentrations.
Therefore, (A) accurately reflects the notion that, under the previous view, degradation rates were considered less important in affecting protein concentrations.
Attention GMAT Students!
To make sure you are not studying endlessly, EduRev has designed GMAT study material, with Structured Courses, Videos, & Test Series. Plus get personalized analysis, doubt solving and improvement plans to achieve a great score in GMAT.
Explore Courses for GMAT exam

Similar GMAT Doubts

Top Courses for GMAT

Protein synthesis begins when the gene encoding a protein is activated. The gene’s sequence of nucleotides is transcribed into a molecule of messenger RNA (mRNA), which reproduces the information contained in that sequence. Transported outside the nucleus to the cytoplasm, the mRNA is translated into the protein it encodes by an organelle known as a ribosome, which strings together amino acids in the order specified by the sequence of elements in the mRNA molecule. Since the amount of mRNA in a cell determines the amount of the corresponding protein, factors affecting the abundance of mRNA’s play a major part in the normal functioning of a cell by appropriately regulating protein synthesis. For example, an excess of certain proteins can cause cells to proliferate abnormally and become cancerous; a lack of the protein insulin results in diabetes.Biologists once assumed that the variable rates at which cells synthesize different mRNA’s determine the quantities of mRNA’s and their corresponding proteins in a cell. However, recent investigations have shown that the concentrations of most mRNA’s correlate best, not with their synthesis rate, but rather with the equally variable rates at which cells degrade the different mRNA’s in their cytoplasm. If a cell degrades both a rapidly and a slowly synthesized mRNA slowly, both mRNA’s will accumulate to high levels.An important example of this phenomenon is the development of red blood cells from their unspecialized parent cells in bone marrow. For red blood cells to accumulate sufficient concentrations of hemoglobin (which transports oxygen) to carry out their main function, the cells’ parent cells must simultaneously produce more of the constituent proteins of hemoglobin and less of most other proteins. To do this, the parent cells halt synthesis of non-hemoglobin mRNA’s in the nucleus and rapidly degrade copies of the non-hemoglobin mRNA’s remaining in the cytoplasm. Halting synthesis of mRNA alone would not affect the quantities of proteins synthesized by the mRNA’s still existing in the cytoplasm. Biologists now believe that most cells can regulate protein production most efficiently by varying both mRNA synthesis and degradation, as developing red cells do, rather than by just varying one or the other.The passage suggests that a biologist who held the view described in the first sentence of the second paragraph would most probably also have believed which of the following?a)The rate of degradation of specific mRNA’s has little effect on protein concentrations.b)The rate of degradation of specific mRNA’s should be studied intensively.c)The rates of synthesis and degradation for any given mRNA are normally equal.d)Different mRNA’s undergo degradation at widely varying rates.e)Most mRNA’s degrade very rapidly.Correct answer is option 'A'. Can you explain this answer?
Question Description
Protein synthesis begins when the gene encoding a protein is activated. The gene’s sequence of nucleotides is transcribed into a molecule of messenger RNA (mRNA), which reproduces the information contained in that sequence. Transported outside the nucleus to the cytoplasm, the mRNA is translated into the protein it encodes by an organelle known as a ribosome, which strings together amino acids in the order specified by the sequence of elements in the mRNA molecule. Since the amount of mRNA in a cell determines the amount of the corresponding protein, factors affecting the abundance of mRNA’s play a major part in the normal functioning of a cell by appropriately regulating protein synthesis. For example, an excess of certain proteins can cause cells to proliferate abnormally and become cancerous; a lack of the protein insulin results in diabetes.Biologists once assumed that the variable rates at which cells synthesize different mRNA’s determine the quantities of mRNA’s and their corresponding proteins in a cell. However, recent investigations have shown that the concentrations of most mRNA’s correlate best, not with their synthesis rate, but rather with the equally variable rates at which cells degrade the different mRNA’s in their cytoplasm. If a cell degrades both a rapidly and a slowly synthesized mRNA slowly, both mRNA’s will accumulate to high levels.An important example of this phenomenon is the development of red blood cells from their unspecialized parent cells in bone marrow. For red blood cells to accumulate sufficient concentrations of hemoglobin (which transports oxygen) to carry out their main function, the cells’ parent cells must simultaneously produce more of the constituent proteins of hemoglobin and less of most other proteins. To do this, the parent cells halt synthesis of non-hemoglobin mRNA’s in the nucleus and rapidly degrade copies of the non-hemoglobin mRNA’s remaining in the cytoplasm. Halting synthesis of mRNA alone would not affect the quantities of proteins synthesized by the mRNA’s still existing in the cytoplasm. Biologists now believe that most cells can regulate protein production most efficiently by varying both mRNA synthesis and degradation, as developing red cells do, rather than by just varying one or the other.The passage suggests that a biologist who held the view described in the first sentence of the second paragraph would most probably also have believed which of the following?a)The rate of degradation of specific mRNA’s has little effect on protein concentrations.b)The rate of degradation of specific mRNA’s should be studied intensively.c)The rates of synthesis and degradation for any given mRNA are normally equal.d)Different mRNA’s undergo degradation at widely varying rates.e)Most mRNA’s degrade very rapidly.Correct answer is option 'A'. Can you explain this answer? for GMAT 2024 is part of GMAT preparation. The Question and answers have been prepared according to the GMAT exam syllabus. Information about Protein synthesis begins when the gene encoding a protein is activated. The gene’s sequence of nucleotides is transcribed into a molecule of messenger RNA (mRNA), which reproduces the information contained in that sequence. Transported outside the nucleus to the cytoplasm, the mRNA is translated into the protein it encodes by an organelle known as a ribosome, which strings together amino acids in the order specified by the sequence of elements in the mRNA molecule. Since the amount of mRNA in a cell determines the amount of the corresponding protein, factors affecting the abundance of mRNA’s play a major part in the normal functioning of a cell by appropriately regulating protein synthesis. For example, an excess of certain proteins can cause cells to proliferate abnormally and become cancerous; a lack of the protein insulin results in diabetes.Biologists once assumed that the variable rates at which cells synthesize different mRNA’s determine the quantities of mRNA’s and their corresponding proteins in a cell. However, recent investigations have shown that the concentrations of most mRNA’s correlate best, not with their synthesis rate, but rather with the equally variable rates at which cells degrade the different mRNA’s in their cytoplasm. If a cell degrades both a rapidly and a slowly synthesized mRNA slowly, both mRNA’s will accumulate to high levels.An important example of this phenomenon is the development of red blood cells from their unspecialized parent cells in bone marrow. For red blood cells to accumulate sufficient concentrations of hemoglobin (which transports oxygen) to carry out their main function, the cells’ parent cells must simultaneously produce more of the constituent proteins of hemoglobin and less of most other proteins. To do this, the parent cells halt synthesis of non-hemoglobin mRNA’s in the nucleus and rapidly degrade copies of the non-hemoglobin mRNA’s remaining in the cytoplasm. Halting synthesis of mRNA alone would not affect the quantities of proteins synthesized by the mRNA’s still existing in the cytoplasm. Biologists now believe that most cells can regulate protein production most efficiently by varying both mRNA synthesis and degradation, as developing red cells do, rather than by just varying one or the other.The passage suggests that a biologist who held the view described in the first sentence of the second paragraph would most probably also have believed which of the following?a)The rate of degradation of specific mRNA’s has little effect on protein concentrations.b)The rate of degradation of specific mRNA’s should be studied intensively.c)The rates of synthesis and degradation for any given mRNA are normally equal.d)Different mRNA’s undergo degradation at widely varying rates.e)Most mRNA’s degrade very rapidly.Correct answer is option 'A'. Can you explain this answer? covers all topics & solutions for GMAT 2024 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for Protein synthesis begins when the gene encoding a protein is activated. The gene’s sequence of nucleotides is transcribed into a molecule of messenger RNA (mRNA), which reproduces the information contained in that sequence. Transported outside the nucleus to the cytoplasm, the mRNA is translated into the protein it encodes by an organelle known as a ribosome, which strings together amino acids in the order specified by the sequence of elements in the mRNA molecule. Since the amount of mRNA in a cell determines the amount of the corresponding protein, factors affecting the abundance of mRNA’s play a major part in the normal functioning of a cell by appropriately regulating protein synthesis. For example, an excess of certain proteins can cause cells to proliferate abnormally and become cancerous; a lack of the protein insulin results in diabetes.Biologists once assumed that the variable rates at which cells synthesize different mRNA’s determine the quantities of mRNA’s and their corresponding proteins in a cell. However, recent investigations have shown that the concentrations of most mRNA’s correlate best, not with their synthesis rate, but rather with the equally variable rates at which cells degrade the different mRNA’s in their cytoplasm. If a cell degrades both a rapidly and a slowly synthesized mRNA slowly, both mRNA’s will accumulate to high levels.An important example of this phenomenon is the development of red blood cells from their unspecialized parent cells in bone marrow. For red blood cells to accumulate sufficient concentrations of hemoglobin (which transports oxygen) to carry out their main function, the cells’ parent cells must simultaneously produce more of the constituent proteins of hemoglobin and less of most other proteins. To do this, the parent cells halt synthesis of non-hemoglobin mRNA’s in the nucleus and rapidly degrade copies of the non-hemoglobin mRNA’s remaining in the cytoplasm. Halting synthesis of mRNA alone would not affect the quantities of proteins synthesized by the mRNA’s still existing in the cytoplasm. Biologists now believe that most cells can regulate protein production most efficiently by varying both mRNA synthesis and degradation, as developing red cells do, rather than by just varying one or the other.The passage suggests that a biologist who held the view described in the first sentence of the second paragraph would most probably also have believed which of the following?a)The rate of degradation of specific mRNA’s has little effect on protein concentrations.b)The rate of degradation of specific mRNA’s should be studied intensively.c)The rates of synthesis and degradation for any given mRNA are normally equal.d)Different mRNA’s undergo degradation at widely varying rates.e)Most mRNA’s degrade very rapidly.Correct answer is option 'A'. Can you explain this answer?.
Solutions for Protein synthesis begins when the gene encoding a protein is activated. The gene’s sequence of nucleotides is transcribed into a molecule of messenger RNA (mRNA), which reproduces the information contained in that sequence. Transported outside the nucleus to the cytoplasm, the mRNA is translated into the protein it encodes by an organelle known as a ribosome, which strings together amino acids in the order specified by the sequence of elements in the mRNA molecule. Since the amount of mRNA in a cell determines the amount of the corresponding protein, factors affecting the abundance of mRNA’s play a major part in the normal functioning of a cell by appropriately regulating protein synthesis. For example, an excess of certain proteins can cause cells to proliferate abnormally and become cancerous; a lack of the protein insulin results in diabetes.Biologists once assumed that the variable rates at which cells synthesize different mRNA’s determine the quantities of mRNA’s and their corresponding proteins in a cell. However, recent investigations have shown that the concentrations of most mRNA’s correlate best, not with their synthesis rate, but rather with the equally variable rates at which cells degrade the different mRNA’s in their cytoplasm. If a cell degrades both a rapidly and a slowly synthesized mRNA slowly, both mRNA’s will accumulate to high levels.An important example of this phenomenon is the development of red blood cells from their unspecialized parent cells in bone marrow. For red blood cells to accumulate sufficient concentrations of hemoglobin (which transports oxygen) to carry out their main function, the cells’ parent cells must simultaneously produce more of the constituent proteins of hemoglobin and less of most other proteins. To do this, the parent cells halt synthesis of non-hemoglobin mRNA’s in the nucleus and rapidly degrade copies of the non-hemoglobin mRNA’s remaining in the cytoplasm. Halting synthesis of mRNA alone would not affect the quantities of proteins synthesized by the mRNA’s still existing in the cytoplasm. Biologists now believe that most cells can regulate protein production most efficiently by varying both mRNA synthesis and degradation, as developing red cells do, rather than by just varying one or the other.The passage suggests that a biologist who held the view described in the first sentence of the second paragraph would most probably also have believed which of the following?a)The rate of degradation of specific mRNA’s has little effect on protein concentrations.b)The rate of degradation of specific mRNA’s should be studied intensively.c)The rates of synthesis and degradation for any given mRNA are normally equal.d)Different mRNA’s undergo degradation at widely varying rates.e)Most mRNA’s degrade very rapidly.Correct answer is option 'A'. Can you explain this answer? in English & in Hindi are available as part of our courses for GMAT. Download more important topics, notes, lectures and mock test series for GMAT Exam by signing up for free.
Here you can find the meaning of Protein synthesis begins when the gene encoding a protein is activated. The gene’s sequence of nucleotides is transcribed into a molecule of messenger RNA (mRNA), which reproduces the information contained in that sequence. Transported outside the nucleus to the cytoplasm, the mRNA is translated into the protein it encodes by an organelle known as a ribosome, which strings together amino acids in the order specified by the sequence of elements in the mRNA molecule. Since the amount of mRNA in a cell determines the amount of the corresponding protein, factors affecting the abundance of mRNA’s play a major part in the normal functioning of a cell by appropriately regulating protein synthesis. For example, an excess of certain proteins can cause cells to proliferate abnormally and become cancerous; a lack of the protein insulin results in diabetes.Biologists once assumed that the variable rates at which cells synthesize different mRNA’s determine the quantities of mRNA’s and their corresponding proteins in a cell. However, recent investigations have shown that the concentrations of most mRNA’s correlate best, not with their synthesis rate, but rather with the equally variable rates at which cells degrade the different mRNA’s in their cytoplasm. If a cell degrades both a rapidly and a slowly synthesized mRNA slowly, both mRNA’s will accumulate to high levels.An important example of this phenomenon is the development of red blood cells from their unspecialized parent cells in bone marrow. For red blood cells to accumulate sufficient concentrations of hemoglobin (which transports oxygen) to carry out their main function, the cells’ parent cells must simultaneously produce more of the constituent proteins of hemoglobin and less of most other proteins. To do this, the parent cells halt synthesis of non-hemoglobin mRNA’s in the nucleus and rapidly degrade copies of the non-hemoglobin mRNA’s remaining in the cytoplasm. Halting synthesis of mRNA alone would not affect the quantities of proteins synthesized by the mRNA’s still existing in the cytoplasm. Biologists now believe that most cells can regulate protein production most efficiently by varying both mRNA synthesis and degradation, as developing red cells do, rather than by just varying one or the other.The passage suggests that a biologist who held the view described in the first sentence of the second paragraph would most probably also have believed which of the following?a)The rate of degradation of specific mRNA’s has little effect on protein concentrations.b)The rate of degradation of specific mRNA’s should be studied intensively.c)The rates of synthesis and degradation for any given mRNA are normally equal.d)Different mRNA’s undergo degradation at widely varying rates.e)Most mRNA’s degrade very rapidly.Correct answer is option 'A'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of Protein synthesis begins when the gene encoding a protein is activated. The gene’s sequence of nucleotides is transcribed into a molecule of messenger RNA (mRNA), which reproduces the information contained in that sequence. Transported outside the nucleus to the cytoplasm, the mRNA is translated into the protein it encodes by an organelle known as a ribosome, which strings together amino acids in the order specified by the sequence of elements in the mRNA molecule. Since the amount of mRNA in a cell determines the amount of the corresponding protein, factors affecting the abundance of mRNA’s play a major part in the normal functioning of a cell by appropriately regulating protein synthesis. For example, an excess of certain proteins can cause cells to proliferate abnormally and become cancerous; a lack of the protein insulin results in diabetes.Biologists once assumed that the variable rates at which cells synthesize different mRNA’s determine the quantities of mRNA’s and their corresponding proteins in a cell. However, recent investigations have shown that the concentrations of most mRNA’s correlate best, not with their synthesis rate, but rather with the equally variable rates at which cells degrade the different mRNA’s in their cytoplasm. If a cell degrades both a rapidly and a slowly synthesized mRNA slowly, both mRNA’s will accumulate to high levels.An important example of this phenomenon is the development of red blood cells from their unspecialized parent cells in bone marrow. For red blood cells to accumulate sufficient concentrations of hemoglobin (which transports oxygen) to carry out their main function, the cells’ parent cells must simultaneously produce more of the constituent proteins of hemoglobin and less of most other proteins. To do this, the parent cells halt synthesis of non-hemoglobin mRNA’s in the nucleus and rapidly degrade copies of the non-hemoglobin mRNA’s remaining in the cytoplasm. Halting synthesis of mRNA alone would not affect the quantities of proteins synthesized by the mRNA’s still existing in the cytoplasm. Biologists now believe that most cells can regulate protein production most efficiently by varying both mRNA synthesis and degradation, as developing red cells do, rather than by just varying one or the other.The passage suggests that a biologist who held the view described in the first sentence of the second paragraph would most probably also have believed which of the following?a)The rate of degradation of specific mRNA’s has little effect on protein concentrations.b)The rate of degradation of specific mRNA’s should be studied intensively.c)The rates of synthesis and degradation for any given mRNA are normally equal.d)Different mRNA’s undergo degradation at widely varying rates.e)Most mRNA’s degrade very rapidly.Correct answer is option 'A'. Can you explain this answer?, a detailed solution for Protein synthesis begins when the gene encoding a protein is activated. The gene’s sequence of nucleotides is transcribed into a molecule of messenger RNA (mRNA), which reproduces the information contained in that sequence. Transported outside the nucleus to the cytoplasm, the mRNA is translated into the protein it encodes by an organelle known as a ribosome, which strings together amino acids in the order specified by the sequence of elements in the mRNA molecule. Since the amount of mRNA in a cell determines the amount of the corresponding protein, factors affecting the abundance of mRNA’s play a major part in the normal functioning of a cell by appropriately regulating protein synthesis. For example, an excess of certain proteins can cause cells to proliferate abnormally and become cancerous; a lack of the protein insulin results in diabetes.Biologists once assumed that the variable rates at which cells synthesize different mRNA’s determine the quantities of mRNA’s and their corresponding proteins in a cell. However, recent investigations have shown that the concentrations of most mRNA’s correlate best, not with their synthesis rate, but rather with the equally variable rates at which cells degrade the different mRNA’s in their cytoplasm. If a cell degrades both a rapidly and a slowly synthesized mRNA slowly, both mRNA’s will accumulate to high levels.An important example of this phenomenon is the development of red blood cells from their unspecialized parent cells in bone marrow. For red blood cells to accumulate sufficient concentrations of hemoglobin (which transports oxygen) to carry out their main function, the cells’ parent cells must simultaneously produce more of the constituent proteins of hemoglobin and less of most other proteins. To do this, the parent cells halt synthesis of non-hemoglobin mRNA’s in the nucleus and rapidly degrade copies of the non-hemoglobin mRNA’s remaining in the cytoplasm. Halting synthesis of mRNA alone would not affect the quantities of proteins synthesized by the mRNA’s still existing in the cytoplasm. Biologists now believe that most cells can regulate protein production most efficiently by varying both mRNA synthesis and degradation, as developing red cells do, rather than by just varying one or the other.The passage suggests that a biologist who held the view described in the first sentence of the second paragraph would most probably also have believed which of the following?a)The rate of degradation of specific mRNA’s has little effect on protein concentrations.b)The rate of degradation of specific mRNA’s should be studied intensively.c)The rates of synthesis and degradation for any given mRNA are normally equal.d)Different mRNA’s undergo degradation at widely varying rates.e)Most mRNA’s degrade very rapidly.Correct answer is option 'A'. Can you explain this answer? has been provided alongside types of Protein synthesis begins when the gene encoding a protein is activated. The gene’s sequence of nucleotides is transcribed into a molecule of messenger RNA (mRNA), which reproduces the information contained in that sequence. Transported outside the nucleus to the cytoplasm, the mRNA is translated into the protein it encodes by an organelle known as a ribosome, which strings together amino acids in the order specified by the sequence of elements in the mRNA molecule. Since the amount of mRNA in a cell determines the amount of the corresponding protein, factors affecting the abundance of mRNA’s play a major part in the normal functioning of a cell by appropriately regulating protein synthesis. For example, an excess of certain proteins can cause cells to proliferate abnormally and become cancerous; a lack of the protein insulin results in diabetes.Biologists once assumed that the variable rates at which cells synthesize different mRNA’s determine the quantities of mRNA’s and their corresponding proteins in a cell. However, recent investigations have shown that the concentrations of most mRNA’s correlate best, not with their synthesis rate, but rather with the equally variable rates at which cells degrade the different mRNA’s in their cytoplasm. If a cell degrades both a rapidly and a slowly synthesized mRNA slowly, both mRNA’s will accumulate to high levels.An important example of this phenomenon is the development of red blood cells from their unspecialized parent cells in bone marrow. For red blood cells to accumulate sufficient concentrations of hemoglobin (which transports oxygen) to carry out their main function, the cells’ parent cells must simultaneously produce more of the constituent proteins of hemoglobin and less of most other proteins. To do this, the parent cells halt synthesis of non-hemoglobin mRNA’s in the nucleus and rapidly degrade copies of the non-hemoglobin mRNA’s remaining in the cytoplasm. Halting synthesis of mRNA alone would not affect the quantities of proteins synthesized by the mRNA’s still existing in the cytoplasm. Biologists now believe that most cells can regulate protein production most efficiently by varying both mRNA synthesis and degradation, as developing red cells do, rather than by just varying one or the other.The passage suggests that a biologist who held the view described in the first sentence of the second paragraph would most probably also have believed which of the following?a)The rate of degradation of specific mRNA’s has little effect on protein concentrations.b)The rate of degradation of specific mRNA’s should be studied intensively.c)The rates of synthesis and degradation for any given mRNA are normally equal.d)Different mRNA’s undergo degradation at widely varying rates.e)Most mRNA’s degrade very rapidly.Correct answer is option 'A'. Can you explain this answer? theory, EduRev gives you an ample number of questions to practice Protein synthesis begins when the gene encoding a protein is activated. The gene’s sequence of nucleotides is transcribed into a molecule of messenger RNA (mRNA), which reproduces the information contained in that sequence. Transported outside the nucleus to the cytoplasm, the mRNA is translated into the protein it encodes by an organelle known as a ribosome, which strings together amino acids in the order specified by the sequence of elements in the mRNA molecule. Since the amount of mRNA in a cell determines the amount of the corresponding protein, factors affecting the abundance of mRNA’s play a major part in the normal functioning of a cell by appropriately regulating protein synthesis. For example, an excess of certain proteins can cause cells to proliferate abnormally and become cancerous; a lack of the protein insulin results in diabetes.Biologists once assumed that the variable rates at which cells synthesize different mRNA’s determine the quantities of mRNA’s and their corresponding proteins in a cell. However, recent investigations have shown that the concentrations of most mRNA’s correlate best, not with their synthesis rate, but rather with the equally variable rates at which cells degrade the different mRNA’s in their cytoplasm. If a cell degrades both a rapidly and a slowly synthesized mRNA slowly, both mRNA’s will accumulate to high levels.An important example of this phenomenon is the development of red blood cells from their unspecialized parent cells in bone marrow. For red blood cells to accumulate sufficient concentrations of hemoglobin (which transports oxygen) to carry out their main function, the cells’ parent cells must simultaneously produce more of the constituent proteins of hemoglobin and less of most other proteins. To do this, the parent cells halt synthesis of non-hemoglobin mRNA’s in the nucleus and rapidly degrade copies of the non-hemoglobin mRNA’s remaining in the cytoplasm. Halting synthesis of mRNA alone would not affect the quantities of proteins synthesized by the mRNA’s still existing in the cytoplasm. Biologists now believe that most cells can regulate protein production most efficiently by varying both mRNA synthesis and degradation, as developing red cells do, rather than by just varying one or the other.The passage suggests that a biologist who held the view described in the first sentence of the second paragraph would most probably also have believed which of the following?a)The rate of degradation of specific mRNA’s has little effect on protein concentrations.b)The rate of degradation of specific mRNA’s should be studied intensively.c)The rates of synthesis and degradation for any given mRNA are normally equal.d)Different mRNA’s undergo degradation at widely varying rates.e)Most mRNA’s degrade very rapidly.Correct answer is option 'A'. Can you explain this answer? tests, examples and also practice GMAT tests.
Explore Courses for GMAT exam

Top Courses for GMAT

Explore Courses
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev