CAT Exam  >  CAT Questions  >  Folate is necessary for the production and ma... Start Learning for Free
Folate is necessary for the production and maintenance of new cells. This is especially important during periods of rapid cell division and growth such as infancy and pregnancy. Folate is needed to synthesize DNA bases (most notably thymine, but also purine bases) needed for DNA replication. Thus folate deficiency hinders DNA synthesis and cell division, affecting most notably bone marrow and cancer, both of which participate in rapid cell division. RNA transcriptions, and subsequent protein synthesis, are less affected by folate deficiency as the mRNA can be recycled and used again (as opposed to DNA synthesis where a new genomic copy must be created). Since folate deficiency limits cell division, erythropoiesis, production of red blood cells (RBCs) is hindered and leads to megaloblastic anaemia which is characterized by large immature RBCs. This pathology results in persistently thwarted attempts at normal DNA replication, DNA repair, and cell division and produces abnormally large cells (megaloblasts) with abundant cytoplasm capable of RNA and protein synthesis but with clumping and fragmentation of nuclear chromatin. Some of these large cells, although immature, are released early from the marrow in an attempt to compensate for the anaemia caused by lack of RBCs. Both adults and children need folate to make normal RBCs and prevent anaemia. Deficiency of folate in pregnant women has been implicated in neural tube birth defects; therefore, many cereals sold in developed countries are enriched with folate to avoid such complications.
There has been concern about the interaction between vitamin B12 and folic acid. Folic acid supplements can correct the anaemia associated with vitamin B12 deficiency. Unfortunately, folic acid will not correct changes in the nervous system that result from vitamin B12 deficiency. Permanent nerve damage could theoretically occur if vitamin B12 deficiency is not treated. Therefore, intake of supplemental folic acid should not exceed 1000 micrograms (1000 pg or 1 mg) per day to prevent folic acid from masking symptoms of vitamin B12 deficiency.
In fact, to date the evidence that such masking actually occurs is scarce, and there is no evidence that folic acid fortification in Canada or the US has increased the prevalence of vitamin B12 deficiency or its consequences.
However one recent study has demonstrated that high folic or folate levels when combined with low B12 levels are associated with significant cognitive impairment among the elderly. If the observed relationship for seniors between folic acid intake, B12 levels, and cognitive impairment is replicated and confirmed, this is likely to re-open the debate on folic acid fortification in food, even though public health policies tend generally to support the developmental needs of infants and children over slight risks to other population groups. In any case, it is important for older adults to be aware of the relationship between folic acid and vitamin B12 because they are at greater risk of having a vitamin B12 deficiency. If you are 50 years of age or older, ask your physician to check your B12 status before you take a supplement that contains folic acid.
 
Q. Which of the following has not been stated in the passage?
  • a)
    If vitamin B12 deficiency is not treated, permanent nerve damage could occur, albeit theoretically.
  • b)
    Folic acid does not correct changes that result from vitamin B12 deficiency in the nervous system.
  • c)
    Anaemia associated with vitamin B12 deficiency can be corrected by Folic acid supplements.
  • d)
    Low Folic or folate levels when combined with high B12 levels are associated with significant cognitive impairment among the elderly.
Correct answer is option 'D'. Can you explain this answer?
Verified Answer
Folate is necessary for the production and maintenance of new cells. T...
All the options 1, 2 and 3 have been stated in the 2nd paragraph of the passage.
Option 4 should have been ‘high’ folate levels and ‘low’ B12 levels to match what is stated in the passage.
Hence, the correct answer is option 4.
View all questions of this test
Explore Courses for CAT exam

Similar CAT Doubts

Group QuestionThe passage given below is followed by a set of questions. Choose the most appropriate answer to each question.Folate is necessary for the production and maintenance of new cells. This is especially important during periods of rapid cell division and growth such as infancy and pregnancy. Folate is needed to synthesize DNA bases (most notably thymine, but also purine bases) needed for DNA replication. Thus folate deficiency hinders DNA synthesis and cell division, affecting most notably bone marrow and cancer, both of which participate in rapid cell division. RNA transcriptions, and subsequent protein synthesis, are less affected by folate deficiency as the mRNA can be recycled and used again (as opposed to DNA synthesis where a new genomic copy must be create d). Since folate deficiency limits cell division, erythropoiesis, production of red blood cells (RBCs) is hindered and leads to megaloblastic anaemia which is characterized by large immature RBCs. This pathology results in persistently thwarted attempts at normal DNA replication, DNA repair, and cell division and produces abnormally large cells (megaloblasts) with abundant cytoplasm capable of RNA and protein synthesis but with clumping and fragmentation of nuclear chromatin. Some of these large cells, although immature, are released early from the marrow in an attempt to compensate for the anaemia caused by lack of RBCs. Both adults and children need folate to make normal RBCs and prevent anaemia. Deficiency of folate in pregnant women has been implicated in neural tube birth defects; therefore, many cereals sold in developed countries are enriched with folate to avoid such complications.There has been concern about the interaction between vitamin B12 and folic acid. Folic acid supplements can correct the anaemia associated with vitamin B12 deficiency. Unfortunately, folic acid will not correct changes in the nervous system that result from vitamin B12 deficiency. Permanent nerve damage could theoretically occur if vitamin B12 deficiency is not treated. Therefore, intake of supplemental folic acid should not exceed 1000 micrograms (1000 pg or 1 mg) per day to prevent folic acid from masking symptoms of vitamin B12 deficiency.In fact, to date the evidence that such masking actually occurs is scarce, and there is no evidence that folic acid fortification in Canada or the US has increased the prevalence of vitamin B12 deficiency or its consequences.However one recent study has demonstrated that high folic or folate levels when combined with low B12 levels are associated with significant cognitive impairment among the elderly. If the observed relationship for seniors between folic acid intake, B12 levels, and cognitive impairment is replicated and confirmed, this is likely to re-open the debate on folic acid fortification in food, even though public health policies tend generally to support the developmentalneeds of infants and children over slight risks to other population groups. In any case, it is important for older adults to be aware of the relationship between folic acid and vitamin B12 because they are at greater risk of having a vitamin B12 deficiency. If you are 50 years of age or older, ask your physician to check your B12 status before you take a supplement that contains folic acid.Q.Which of the following is indicated in the passage?A. Folates deficiency, hindering cell division, affects bone marrow and cancer.B. Vitamin B^and folic acid often correct deficiencies caused by the others levels in the human system.C. Health concerns especially relating with cognitive impairment have increased the research about folates.

Folate is necessary for the production and maintenance of new cells. This is especially important during periods of rapid cell division and growth such as infancy and pregnancy. Folate is needed to synthesize DNA bases (most notably thymine, but also purine bases) needed for DNA replication. Thus folate deficiency hinders DNA synthesis and cell division, affecting most notably bone marrow and cancer, both of which participate in rapid cell division. RNA transcriptions, and subsequent protein synthesis, are less affected by folate deficiency as the mRNA can be recycled and used again (as opposed to DNA synthesis where a new genomic copy must be create d). Since folate deficiency limits cell division, erythropoiesis, production of red blood cells (RBCs) is hindered and leads to megaloblastic anaemia which is characterized by large immature RBCs. This pathology results in persistently thwarted attempts at normal DNA replication, DNA repair, and cell division and produces abnormally large cells (megaloblasts) with abundant cytoplasm capable of RNA and protein synthesis but with clumping and fragmentation of nuclear chromatin. Some of these large cells, although immature, are released early from the marrow in an attempt to compensate for the anaemia caused by lack of RBCs. Both adults and children need folate to make normal RBCs and prevent anaemia. Deficiency of folate in pregnant women has been implicated in neural tube birth defects; therefore, many cereals sold in developed countries are enriched with folate to avoid such complications.There has been concern about the interaction between vitamin B12 and folic acid. Folic acid supplements can correct the anaemia associated with vitamin B12 deficiency. Unfortunately, folic acid will not correct changes in the nervous system that result from vitamin B12 deficiency. Permanent nerve damage could theoretically occur if vitamin B12 deficiency is not treated. Therefore, intake of supplemental folic acid should not exceed 1000 micrograms (1000 pg or 1 mg) per day to prevent folic acid from masking symptoms of vitamin B12 deficiency.In fact, to date the evidence that such masking actually occurs is scarce, and there is no evidence that folic acid fortification in Canada or the US has increased the prevalence of vitamin B12 deficiency or its consequences.However one recent study has demonstrated that high folic or folate levels when combined with low B12 levels are associated with significant cognitive impairment among the elderly. If the observed relationship for seniors between folic acid intake, B12 levels, and cognitive impairment is replicated and confirmed, this is likely to re-open the debate on folic acid fortification in food, even though public health policies tend generally to support the developmentalneeds of infants and children over slight risks to other population groups. In any case, it is important for older adults to be aware of the relationship between folic acid and vitamin B12 because they are at greater risk of having a vitamin B12 deficiency. If you are 50 years of age or older, ask your physician to check your B12 status before you take a supplement that contains folic acid.Q.Deficiency of folate is a cause of concern because

Answer the following question based on the information given below.Claude Elwood Shannon, a mathematician born in Gaylord, Michigan (U.S.) in 1916, is credited with two important contributions to information technology: the application of Boolean theory to electronic switching, thus laying the groundwork for the digital computer, and developing the new field called information theory. It is difficult to overstate the impact which Claude Shannon has had on the 20th century and the way we live and work in it, yet he remains practically unknown to the general public. Shannon spent the bulk of his career, a span of over 30 years from 1941 to 1972, at Bell Labs where he worked as a mathematician dedicated to research.While a graduate student at MIT in the late 1930s, Shannon worked for Vannevar Bush who was at that time building a mechanical computer, the Differential Analyser. Shannon had the insight to apply the two-valued Boolean logic to electrical circuits (which could be in either of two states - on or off). This syncretism of two hitherto distinct fields earned Shannon his MS in 1937 and his doctorate in 1940.Not content with laying the logical foundations of both the modern telephone switch and the digital computer, Shannon went on to invent the discipline of information theory and revolutionize the field of communications. He developed the concept of entropy in communication systems, the idea that information is based on uncertainty. This concept says that the more uncertainty in a communication channel, the more information that can be transmitted and vice versa. Shannon used mathematics to define the capacity of any communications channel to optimize the signal-to-noise ratio. He envisioned the possibility of error-free communications for telecommunications, the Internet, and satellite systems.A Mathematical Theory Of Communication , published in the Bell Systems Technical Journal in 1948, outlines the principles of his information theory. Information Theory also has important ramifications for the field of cryptography as explained in his 1949 paper Communication Theory of Secrecy Systems- in a nutshell, the more entropy a cryptographic system has, the harder the resulting encryption is to break.Shannon's varied retirement interests included inventing unicycles, motorized pogo sticks, and chess-playing robots as well as juggling - he developed an equation describing the relationship between the position of the balls and the action of the hands. Claude Shannon died on February 24, 2001.Q. What is the concept of entropy described in the passage?

Folate is necessary for the production and maintenance of new cells. This is especially important during periods of rapid cell division and growth such as infancy and pregnancy. Folate is needed to synthesize DNA bases (most notably thymine, but also purine bases) needed for DNA replication. Thus folate deficiency hinders DNA synthesis and cell division, affecting most notably bone marrow and cancer, both of which participate in rapid cell division. RNA transcriptions, and subsequent protein synthesis, are less affected by folate deficiency as the mRNA can be recycled and used again (as opposed to DNA synthesis where a new genomic copy must be created). Since folate deficiency limits cell division, erythropoiesis, production of red blood cells (RBCs) is hindered and leads to megaloblastic anaemia which is characterized by large immature RBCs. This pathology results in persistently thwarted attempts at normal DNA replication, DNA repair, and cell division and produces abnormally large cells (megaloblasts) with abundant cytoplasm capable of RNA and protein synthesis but with clumping and fragmentation of nuclear chromatin. Some of these large cells, although immature, are released early from the marrow in an attempt to compensate for the anaemia caused by lack of RBCs. Both adults and children need folate to make normal RBCs and prevent anaemia. Deficiency of folate in pregnant women has been implicated in neural tube birth defects; therefore, many cereals sold in developed countries are enriched with folate to avoid such complications.There has been concern about the interaction between vitamin B12 and folic acid. Folic acid supplements can correct the anaemia associated with vitamin B12 deficiency. Unfortunately, folic acid will not correct changes in the nervous system that result from vitamin B12 deficiency. Permanent nerve damage could theoretically occur if vitamin B12 deficiency is not treated. Therefore, intake of supplemental folic acid should not exceed 1000 micrograms (1000 pg or 1 mg) per day to prevent folic acid from masking symptoms of vitamin B12 deficiency.In fact, to date the evidence that such masking actually occurs is scarce, and there is no evidence that folic acid fortification in Canada or the US has increased the prevalence of vitamin B12 deficiency or its consequences.However one recent study has demonstrated that high folic or folate levels when combined with low B12 levels are associated with significant cognitive impairment among the elderly. If the observed relationship for seniors between folic acid intake, B12 levels, and cognitive impairment is replicated and confirmed, this is likely to re-open the debate on folic acid fortification in food, even though public health policies tend generally to support the developmentalneeds of infants and children over slight risks to other population groups. In any case, it is important for older adults to be aware of the relationship between folic acid and vitamin B12 because they are at greater risk of having a vitamin B12 deficiency. If you are 50 years of age or older, ask your physician to check your B12 status before you take a supplement that contains folic acid.Q.Which of the following has not been stated in the passage?a)If vitamin B12 deficiency is not treated, permanent nerve damage could occur, albeit theoretically.b)Folic acid does not correct changes that result from vitamin B12 deficiency in the nervous system.c)Anaemia associated with vitamin B12 deficiency can be corrected by Folic acid supplements.d)Low Folic or folate levels when combined with high B12 levels are associated with significant cognitive impairment among the elderly.Correct answer is option 'D'. Can you explain this answer?
Question Description
Folate is necessary for the production and maintenance of new cells. This is especially important during periods of rapid cell division and growth such as infancy and pregnancy. Folate is needed to synthesize DNA bases (most notably thymine, but also purine bases) needed for DNA replication. Thus folate deficiency hinders DNA synthesis and cell division, affecting most notably bone marrow and cancer, both of which participate in rapid cell division. RNA transcriptions, and subsequent protein synthesis, are less affected by folate deficiency as the mRNA can be recycled and used again (as opposed to DNA synthesis where a new genomic copy must be created). Since folate deficiency limits cell division, erythropoiesis, production of red blood cells (RBCs) is hindered and leads to megaloblastic anaemia which is characterized by large immature RBCs. This pathology results in persistently thwarted attempts at normal DNA replication, DNA repair, and cell division and produces abnormally large cells (megaloblasts) with abundant cytoplasm capable of RNA and protein synthesis but with clumping and fragmentation of nuclear chromatin. Some of these large cells, although immature, are released early from the marrow in an attempt to compensate for the anaemia caused by lack of RBCs. Both adults and children need folate to make normal RBCs and prevent anaemia. Deficiency of folate in pregnant women has been implicated in neural tube birth defects; therefore, many cereals sold in developed countries are enriched with folate to avoid such complications.There has been concern about the interaction between vitamin B12 and folic acid. Folic acid supplements can correct the anaemia associated with vitamin B12 deficiency. Unfortunately, folic acid will not correct changes in the nervous system that result from vitamin B12 deficiency. Permanent nerve damage could theoretically occur if vitamin B12 deficiency is not treated. Therefore, intake of supplemental folic acid should not exceed 1000 micrograms (1000 pg or 1 mg) per day to prevent folic acid from masking symptoms of vitamin B12 deficiency.In fact, to date the evidence that such masking actually occurs is scarce, and there is no evidence that folic acid fortification in Canada or the US has increased the prevalence of vitamin B12 deficiency or its consequences.However one recent study has demonstrated that high folic or folate levels when combined with low B12 levels are associated with significant cognitive impairment among the elderly. If the observed relationship for seniors between folic acid intake, B12 levels, and cognitive impairment is replicated and confirmed, this is likely to re-open the debate on folic acid fortification in food, even though public health policies tend generally to support the developmentalneeds of infants and children over slight risks to other population groups. In any case, it is important for older adults to be aware of the relationship between folic acid and vitamin B12 because they are at greater risk of having a vitamin B12 deficiency. If you are 50 years of age or older, ask your physician to check your B12 status before you take a supplement that contains folic acid.Q.Which of the following has not been stated in the passage?a)If vitamin B12 deficiency is not treated, permanent nerve damage could occur, albeit theoretically.b)Folic acid does not correct changes that result from vitamin B12 deficiency in the nervous system.c)Anaemia associated with vitamin B12 deficiency can be corrected by Folic acid supplements.d)Low Folic or folate levels when combined with high B12 levels are associated with significant cognitive impairment among the elderly.Correct answer is option 'D'. Can you explain this answer? for CAT 2024 is part of CAT preparation. The Question and answers have been prepared according to the CAT exam syllabus. Information about Folate is necessary for the production and maintenance of new cells. This is especially important during periods of rapid cell division and growth such as infancy and pregnancy. Folate is needed to synthesize DNA bases (most notably thymine, but also purine bases) needed for DNA replication. Thus folate deficiency hinders DNA synthesis and cell division, affecting most notably bone marrow and cancer, both of which participate in rapid cell division. RNA transcriptions, and subsequent protein synthesis, are less affected by folate deficiency as the mRNA can be recycled and used again (as opposed to DNA synthesis where a new genomic copy must be created). Since folate deficiency limits cell division, erythropoiesis, production of red blood cells (RBCs) is hindered and leads to megaloblastic anaemia which is characterized by large immature RBCs. This pathology results in persistently thwarted attempts at normal DNA replication, DNA repair, and cell division and produces abnormally large cells (megaloblasts) with abundant cytoplasm capable of RNA and protein synthesis but with clumping and fragmentation of nuclear chromatin. Some of these large cells, although immature, are released early from the marrow in an attempt to compensate for the anaemia caused by lack of RBCs. Both adults and children need folate to make normal RBCs and prevent anaemia. Deficiency of folate in pregnant women has been implicated in neural tube birth defects; therefore, many cereals sold in developed countries are enriched with folate to avoid such complications.There has been concern about the interaction between vitamin B12 and folic acid. Folic acid supplements can correct the anaemia associated with vitamin B12 deficiency. Unfortunately, folic acid will not correct changes in the nervous system that result from vitamin B12 deficiency. Permanent nerve damage could theoretically occur if vitamin B12 deficiency is not treated. Therefore, intake of supplemental folic acid should not exceed 1000 micrograms (1000 pg or 1 mg) per day to prevent folic acid from masking symptoms of vitamin B12 deficiency.In fact, to date the evidence that such masking actually occurs is scarce, and there is no evidence that folic acid fortification in Canada or the US has increased the prevalence of vitamin B12 deficiency or its consequences.However one recent study has demonstrated that high folic or folate levels when combined with low B12 levels are associated with significant cognitive impairment among the elderly. If the observed relationship for seniors between folic acid intake, B12 levels, and cognitive impairment is replicated and confirmed, this is likely to re-open the debate on folic acid fortification in food, even though public health policies tend generally to support the developmentalneeds of infants and children over slight risks to other population groups. In any case, it is important for older adults to be aware of the relationship between folic acid and vitamin B12 because they are at greater risk of having a vitamin B12 deficiency. If you are 50 years of age or older, ask your physician to check your B12 status before you take a supplement that contains folic acid.Q.Which of the following has not been stated in the passage?a)If vitamin B12 deficiency is not treated, permanent nerve damage could occur, albeit theoretically.b)Folic acid does not correct changes that result from vitamin B12 deficiency in the nervous system.c)Anaemia associated with vitamin B12 deficiency can be corrected by Folic acid supplements.d)Low Folic or folate levels when combined with high B12 levels are associated with significant cognitive impairment among the elderly.Correct answer is option 'D'. Can you explain this answer? covers all topics & solutions for CAT 2024 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for Folate is necessary for the production and maintenance of new cells. This is especially important during periods of rapid cell division and growth such as infancy and pregnancy. Folate is needed to synthesize DNA bases (most notably thymine, but also purine bases) needed for DNA replication. Thus folate deficiency hinders DNA synthesis and cell division, affecting most notably bone marrow and cancer, both of which participate in rapid cell division. RNA transcriptions, and subsequent protein synthesis, are less affected by folate deficiency as the mRNA can be recycled and used again (as opposed to DNA synthesis where a new genomic copy must be created). Since folate deficiency limits cell division, erythropoiesis, production of red blood cells (RBCs) is hindered and leads to megaloblastic anaemia which is characterized by large immature RBCs. This pathology results in persistently thwarted attempts at normal DNA replication, DNA repair, and cell division and produces abnormally large cells (megaloblasts) with abundant cytoplasm capable of RNA and protein synthesis but with clumping and fragmentation of nuclear chromatin. Some of these large cells, although immature, are released early from the marrow in an attempt to compensate for the anaemia caused by lack of RBCs. Both adults and children need folate to make normal RBCs and prevent anaemia. Deficiency of folate in pregnant women has been implicated in neural tube birth defects; therefore, many cereals sold in developed countries are enriched with folate to avoid such complications.There has been concern about the interaction between vitamin B12 and folic acid. Folic acid supplements can correct the anaemia associated with vitamin B12 deficiency. Unfortunately, folic acid will not correct changes in the nervous system that result from vitamin B12 deficiency. Permanent nerve damage could theoretically occur if vitamin B12 deficiency is not treated. Therefore, intake of supplemental folic acid should not exceed 1000 micrograms (1000 pg or 1 mg) per day to prevent folic acid from masking symptoms of vitamin B12 deficiency.In fact, to date the evidence that such masking actually occurs is scarce, and there is no evidence that folic acid fortification in Canada or the US has increased the prevalence of vitamin B12 deficiency or its consequences.However one recent study has demonstrated that high folic or folate levels when combined with low B12 levels are associated with significant cognitive impairment among the elderly. If the observed relationship for seniors between folic acid intake, B12 levels, and cognitive impairment is replicated and confirmed, this is likely to re-open the debate on folic acid fortification in food, even though public health policies tend generally to support the developmentalneeds of infants and children over slight risks to other population groups. In any case, it is important for older adults to be aware of the relationship between folic acid and vitamin B12 because they are at greater risk of having a vitamin B12 deficiency. If you are 50 years of age or older, ask your physician to check your B12 status before you take a supplement that contains folic acid.Q.Which of the following has not been stated in the passage?a)If vitamin B12 deficiency is not treated, permanent nerve damage could occur, albeit theoretically.b)Folic acid does not correct changes that result from vitamin B12 deficiency in the nervous system.c)Anaemia associated with vitamin B12 deficiency can be corrected by Folic acid supplements.d)Low Folic or folate levels when combined with high B12 levels are associated with significant cognitive impairment among the elderly.Correct answer is option 'D'. Can you explain this answer?.
Solutions for Folate is necessary for the production and maintenance of new cells. This is especially important during periods of rapid cell division and growth such as infancy and pregnancy. Folate is needed to synthesize DNA bases (most notably thymine, but also purine bases) needed for DNA replication. Thus folate deficiency hinders DNA synthesis and cell division, affecting most notably bone marrow and cancer, both of which participate in rapid cell division. RNA transcriptions, and subsequent protein synthesis, are less affected by folate deficiency as the mRNA can be recycled and used again (as opposed to DNA synthesis where a new genomic copy must be created). Since folate deficiency limits cell division, erythropoiesis, production of red blood cells (RBCs) is hindered and leads to megaloblastic anaemia which is characterized by large immature RBCs. This pathology results in persistently thwarted attempts at normal DNA replication, DNA repair, and cell division and produces abnormally large cells (megaloblasts) with abundant cytoplasm capable of RNA and protein synthesis but with clumping and fragmentation of nuclear chromatin. Some of these large cells, although immature, are released early from the marrow in an attempt to compensate for the anaemia caused by lack of RBCs. Both adults and children need folate to make normal RBCs and prevent anaemia. Deficiency of folate in pregnant women has been implicated in neural tube birth defects; therefore, many cereals sold in developed countries are enriched with folate to avoid such complications.There has been concern about the interaction between vitamin B12 and folic acid. Folic acid supplements can correct the anaemia associated with vitamin B12 deficiency. Unfortunately, folic acid will not correct changes in the nervous system that result from vitamin B12 deficiency. Permanent nerve damage could theoretically occur if vitamin B12 deficiency is not treated. Therefore, intake of supplemental folic acid should not exceed 1000 micrograms (1000 pg or 1 mg) per day to prevent folic acid from masking symptoms of vitamin B12 deficiency.In fact, to date the evidence that such masking actually occurs is scarce, and there is no evidence that folic acid fortification in Canada or the US has increased the prevalence of vitamin B12 deficiency or its consequences.However one recent study has demonstrated that high folic or folate levels when combined with low B12 levels are associated with significant cognitive impairment among the elderly. If the observed relationship for seniors between folic acid intake, B12 levels, and cognitive impairment is replicated and confirmed, this is likely to re-open the debate on folic acid fortification in food, even though public health policies tend generally to support the developmentalneeds of infants and children over slight risks to other population groups. In any case, it is important for older adults to be aware of the relationship between folic acid and vitamin B12 because they are at greater risk of having a vitamin B12 deficiency. If you are 50 years of age or older, ask your physician to check your B12 status before you take a supplement that contains folic acid.Q.Which of the following has not been stated in the passage?a)If vitamin B12 deficiency is not treated, permanent nerve damage could occur, albeit theoretically.b)Folic acid does not correct changes that result from vitamin B12 deficiency in the nervous system.c)Anaemia associated with vitamin B12 deficiency can be corrected by Folic acid supplements.d)Low Folic or folate levels when combined with high B12 levels are associated with significant cognitive impairment among the elderly.Correct answer is option 'D'. Can you explain this answer? in English & in Hindi are available as part of our courses for CAT. Download more important topics, notes, lectures and mock test series for CAT Exam by signing up for free.
Here you can find the meaning of Folate is necessary for the production and maintenance of new cells. This is especially important during periods of rapid cell division and growth such as infancy and pregnancy. Folate is needed to synthesize DNA bases (most notably thymine, but also purine bases) needed for DNA replication. Thus folate deficiency hinders DNA synthesis and cell division, affecting most notably bone marrow and cancer, both of which participate in rapid cell division. RNA transcriptions, and subsequent protein synthesis, are less affected by folate deficiency as the mRNA can be recycled and used again (as opposed to DNA synthesis where a new genomic copy must be created). Since folate deficiency limits cell division, erythropoiesis, production of red blood cells (RBCs) is hindered and leads to megaloblastic anaemia which is characterized by large immature RBCs. This pathology results in persistently thwarted attempts at normal DNA replication, DNA repair, and cell division and produces abnormally large cells (megaloblasts) with abundant cytoplasm capable of RNA and protein synthesis but with clumping and fragmentation of nuclear chromatin. Some of these large cells, although immature, are released early from the marrow in an attempt to compensate for the anaemia caused by lack of RBCs. Both adults and children need folate to make normal RBCs and prevent anaemia. Deficiency of folate in pregnant women has been implicated in neural tube birth defects; therefore, many cereals sold in developed countries are enriched with folate to avoid such complications.There has been concern about the interaction between vitamin B12 and folic acid. Folic acid supplements can correct the anaemia associated with vitamin B12 deficiency. Unfortunately, folic acid will not correct changes in the nervous system that result from vitamin B12 deficiency. Permanent nerve damage could theoretically occur if vitamin B12 deficiency is not treated. Therefore, intake of supplemental folic acid should not exceed 1000 micrograms (1000 pg or 1 mg) per day to prevent folic acid from masking symptoms of vitamin B12 deficiency.In fact, to date the evidence that such masking actually occurs is scarce, and there is no evidence that folic acid fortification in Canada or the US has increased the prevalence of vitamin B12 deficiency or its consequences.However one recent study has demonstrated that high folic or folate levels when combined with low B12 levels are associated with significant cognitive impairment among the elderly. If the observed relationship for seniors between folic acid intake, B12 levels, and cognitive impairment is replicated and confirmed, this is likely to re-open the debate on folic acid fortification in food, even though public health policies tend generally to support the developmentalneeds of infants and children over slight risks to other population groups. In any case, it is important for older adults to be aware of the relationship between folic acid and vitamin B12 because they are at greater risk of having a vitamin B12 deficiency. If you are 50 years of age or older, ask your physician to check your B12 status before you take a supplement that contains folic acid.Q.Which of the following has not been stated in the passage?a)If vitamin B12 deficiency is not treated, permanent nerve damage could occur, albeit theoretically.b)Folic acid does not correct changes that result from vitamin B12 deficiency in the nervous system.c)Anaemia associated with vitamin B12 deficiency can be corrected by Folic acid supplements.d)Low Folic or folate levels when combined with high B12 levels are associated with significant cognitive impairment among the elderly.Correct answer is option 'D'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of Folate is necessary for the production and maintenance of new cells. This is especially important during periods of rapid cell division and growth such as infancy and pregnancy. Folate is needed to synthesize DNA bases (most notably thymine, but also purine bases) needed for DNA replication. Thus folate deficiency hinders DNA synthesis and cell division, affecting most notably bone marrow and cancer, both of which participate in rapid cell division. RNA transcriptions, and subsequent protein synthesis, are less affected by folate deficiency as the mRNA can be recycled and used again (as opposed to DNA synthesis where a new genomic copy must be created). Since folate deficiency limits cell division, erythropoiesis, production of red blood cells (RBCs) is hindered and leads to megaloblastic anaemia which is characterized by large immature RBCs. This pathology results in persistently thwarted attempts at normal DNA replication, DNA repair, and cell division and produces abnormally large cells (megaloblasts) with abundant cytoplasm capable of RNA and protein synthesis but with clumping and fragmentation of nuclear chromatin. Some of these large cells, although immature, are released early from the marrow in an attempt to compensate for the anaemia caused by lack of RBCs. Both adults and children need folate to make normal RBCs and prevent anaemia. Deficiency of folate in pregnant women has been implicated in neural tube birth defects; therefore, many cereals sold in developed countries are enriched with folate to avoid such complications.There has been concern about the interaction between vitamin B12 and folic acid. Folic acid supplements can correct the anaemia associated with vitamin B12 deficiency. Unfortunately, folic acid will not correct changes in the nervous system that result from vitamin B12 deficiency. Permanent nerve damage could theoretically occur if vitamin B12 deficiency is not treated. Therefore, intake of supplemental folic acid should not exceed 1000 micrograms (1000 pg or 1 mg) per day to prevent folic acid from masking symptoms of vitamin B12 deficiency.In fact, to date the evidence that such masking actually occurs is scarce, and there is no evidence that folic acid fortification in Canada or the US has increased the prevalence of vitamin B12 deficiency or its consequences.However one recent study has demonstrated that high folic or folate levels when combined with low B12 levels are associated with significant cognitive impairment among the elderly. If the observed relationship for seniors between folic acid intake, B12 levels, and cognitive impairment is replicated and confirmed, this is likely to re-open the debate on folic acid fortification in food, even though public health policies tend generally to support the developmentalneeds of infants and children over slight risks to other population groups. In any case, it is important for older adults to be aware of the relationship between folic acid and vitamin B12 because they are at greater risk of having a vitamin B12 deficiency. If you are 50 years of age or older, ask your physician to check your B12 status before you take a supplement that contains folic acid.Q.Which of the following has not been stated in the passage?a)If vitamin B12 deficiency is not treated, permanent nerve damage could occur, albeit theoretically.b)Folic acid does not correct changes that result from vitamin B12 deficiency in the nervous system.c)Anaemia associated with vitamin B12 deficiency can be corrected by Folic acid supplements.d)Low Folic or folate levels when combined with high B12 levels are associated with significant cognitive impairment among the elderly.Correct answer is option 'D'. Can you explain this answer?, a detailed solution for Folate is necessary for the production and maintenance of new cells. This is especially important during periods of rapid cell division and growth such as infancy and pregnancy. Folate is needed to synthesize DNA bases (most notably thymine, but also purine bases) needed for DNA replication. Thus folate deficiency hinders DNA synthesis and cell division, affecting most notably bone marrow and cancer, both of which participate in rapid cell division. RNA transcriptions, and subsequent protein synthesis, are less affected by folate deficiency as the mRNA can be recycled and used again (as opposed to DNA synthesis where a new genomic copy must be created). Since folate deficiency limits cell division, erythropoiesis, production of red blood cells (RBCs) is hindered and leads to megaloblastic anaemia which is characterized by large immature RBCs. This pathology results in persistently thwarted attempts at normal DNA replication, DNA repair, and cell division and produces abnormally large cells (megaloblasts) with abundant cytoplasm capable of RNA and protein synthesis but with clumping and fragmentation of nuclear chromatin. Some of these large cells, although immature, are released early from the marrow in an attempt to compensate for the anaemia caused by lack of RBCs. Both adults and children need folate to make normal RBCs and prevent anaemia. Deficiency of folate in pregnant women has been implicated in neural tube birth defects; therefore, many cereals sold in developed countries are enriched with folate to avoid such complications.There has been concern about the interaction between vitamin B12 and folic acid. Folic acid supplements can correct the anaemia associated with vitamin B12 deficiency. Unfortunately, folic acid will not correct changes in the nervous system that result from vitamin B12 deficiency. Permanent nerve damage could theoretically occur if vitamin B12 deficiency is not treated. Therefore, intake of supplemental folic acid should not exceed 1000 micrograms (1000 pg or 1 mg) per day to prevent folic acid from masking symptoms of vitamin B12 deficiency.In fact, to date the evidence that such masking actually occurs is scarce, and there is no evidence that folic acid fortification in Canada or the US has increased the prevalence of vitamin B12 deficiency or its consequences.However one recent study has demonstrated that high folic or folate levels when combined with low B12 levels are associated with significant cognitive impairment among the elderly. If the observed relationship for seniors between folic acid intake, B12 levels, and cognitive impairment is replicated and confirmed, this is likely to re-open the debate on folic acid fortification in food, even though public health policies tend generally to support the developmentalneeds of infants and children over slight risks to other population groups. In any case, it is important for older adults to be aware of the relationship between folic acid and vitamin B12 because they are at greater risk of having a vitamin B12 deficiency. If you are 50 years of age or older, ask your physician to check your B12 status before you take a supplement that contains folic acid.Q.Which of the following has not been stated in the passage?a)If vitamin B12 deficiency is not treated, permanent nerve damage could occur, albeit theoretically.b)Folic acid does not correct changes that result from vitamin B12 deficiency in the nervous system.c)Anaemia associated with vitamin B12 deficiency can be corrected by Folic acid supplements.d)Low Folic or folate levels when combined with high B12 levels are associated with significant cognitive impairment among the elderly.Correct answer is option 'D'. Can you explain this answer? has been provided alongside types of Folate is necessary for the production and maintenance of new cells. This is especially important during periods of rapid cell division and growth such as infancy and pregnancy. Folate is needed to synthesize DNA bases (most notably thymine, but also purine bases) needed for DNA replication. Thus folate deficiency hinders DNA synthesis and cell division, affecting most notably bone marrow and cancer, both of which participate in rapid cell division. RNA transcriptions, and subsequent protein synthesis, are less affected by folate deficiency as the mRNA can be recycled and used again (as opposed to DNA synthesis where a new genomic copy must be created). Since folate deficiency limits cell division, erythropoiesis, production of red blood cells (RBCs) is hindered and leads to megaloblastic anaemia which is characterized by large immature RBCs. This pathology results in persistently thwarted attempts at normal DNA replication, DNA repair, and cell division and produces abnormally large cells (megaloblasts) with abundant cytoplasm capable of RNA and protein synthesis but with clumping and fragmentation of nuclear chromatin. Some of these large cells, although immature, are released early from the marrow in an attempt to compensate for the anaemia caused by lack of RBCs. Both adults and children need folate to make normal RBCs and prevent anaemia. Deficiency of folate in pregnant women has been implicated in neural tube birth defects; therefore, many cereals sold in developed countries are enriched with folate to avoid such complications.There has been concern about the interaction between vitamin B12 and folic acid. Folic acid supplements can correct the anaemia associated with vitamin B12 deficiency. Unfortunately, folic acid will not correct changes in the nervous system that result from vitamin B12 deficiency. Permanent nerve damage could theoretically occur if vitamin B12 deficiency is not treated. Therefore, intake of supplemental folic acid should not exceed 1000 micrograms (1000 pg or 1 mg) per day to prevent folic acid from masking symptoms of vitamin B12 deficiency.In fact, to date the evidence that such masking actually occurs is scarce, and there is no evidence that folic acid fortification in Canada or the US has increased the prevalence of vitamin B12 deficiency or its consequences.However one recent study has demonstrated that high folic or folate levels when combined with low B12 levels are associated with significant cognitive impairment among the elderly. If the observed relationship for seniors between folic acid intake, B12 levels, and cognitive impairment is replicated and confirmed, this is likely to re-open the debate on folic acid fortification in food, even though public health policies tend generally to support the developmentalneeds of infants and children over slight risks to other population groups. In any case, it is important for older adults to be aware of the relationship between folic acid and vitamin B12 because they are at greater risk of having a vitamin B12 deficiency. If you are 50 years of age or older, ask your physician to check your B12 status before you take a supplement that contains folic acid.Q.Which of the following has not been stated in the passage?a)If vitamin B12 deficiency is not treated, permanent nerve damage could occur, albeit theoretically.b)Folic acid does not correct changes that result from vitamin B12 deficiency in the nervous system.c)Anaemia associated with vitamin B12 deficiency can be corrected by Folic acid supplements.d)Low Folic or folate levels when combined with high B12 levels are associated with significant cognitive impairment among the elderly.Correct answer is option 'D'. Can you explain this answer? theory, EduRev gives you an ample number of questions to practice Folate is necessary for the production and maintenance of new cells. This is especially important during periods of rapid cell division and growth such as infancy and pregnancy. Folate is needed to synthesize DNA bases (most notably thymine, but also purine bases) needed for DNA replication. Thus folate deficiency hinders DNA synthesis and cell division, affecting most notably bone marrow and cancer, both of which participate in rapid cell division. RNA transcriptions, and subsequent protein synthesis, are less affected by folate deficiency as the mRNA can be recycled and used again (as opposed to DNA synthesis where a new genomic copy must be created). Since folate deficiency limits cell division, erythropoiesis, production of red blood cells (RBCs) is hindered and leads to megaloblastic anaemia which is characterized by large immature RBCs. This pathology results in persistently thwarted attempts at normal DNA replication, DNA repair, and cell division and produces abnormally large cells (megaloblasts) with abundant cytoplasm capable of RNA and protein synthesis but with clumping and fragmentation of nuclear chromatin. Some of these large cells, although immature, are released early from the marrow in an attempt to compensate for the anaemia caused by lack of RBCs. Both adults and children need folate to make normal RBCs and prevent anaemia. Deficiency of folate in pregnant women has been implicated in neural tube birth defects; therefore, many cereals sold in developed countries are enriched with folate to avoid such complications.There has been concern about the interaction between vitamin B12 and folic acid. Folic acid supplements can correct the anaemia associated with vitamin B12 deficiency. Unfortunately, folic acid will not correct changes in the nervous system that result from vitamin B12 deficiency. Permanent nerve damage could theoretically occur if vitamin B12 deficiency is not treated. Therefore, intake of supplemental folic acid should not exceed 1000 micrograms (1000 pg or 1 mg) per day to prevent folic acid from masking symptoms of vitamin B12 deficiency.In fact, to date the evidence that such masking actually occurs is scarce, and there is no evidence that folic acid fortification in Canada or the US has increased the prevalence of vitamin B12 deficiency or its consequences.However one recent study has demonstrated that high folic or folate levels when combined with low B12 levels are associated with significant cognitive impairment among the elderly. If the observed relationship for seniors between folic acid intake, B12 levels, and cognitive impairment is replicated and confirmed, this is likely to re-open the debate on folic acid fortification in food, even though public health policies tend generally to support the developmentalneeds of infants and children over slight risks to other population groups. In any case, it is important for older adults to be aware of the relationship between folic acid and vitamin B12 because they are at greater risk of having a vitamin B12 deficiency. If you are 50 years of age or older, ask your physician to check your B12 status before you take a supplement that contains folic acid.Q.Which of the following has not been stated in the passage?a)If vitamin B12 deficiency is not treated, permanent nerve damage could occur, albeit theoretically.b)Folic acid does not correct changes that result from vitamin B12 deficiency in the nervous system.c)Anaemia associated with vitamin B12 deficiency can be corrected by Folic acid supplements.d)Low Folic or folate levels when combined with high B12 levels are associated with significant cognitive impairment among the elderly.Correct answer is option 'D'. Can you explain this answer? tests, examples and also practice CAT tests.
Explore Courses for CAT exam

Top Courses for CAT

Explore Courses
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev