UPSC Exam  >  UPSC Questions  >  Passage 2Newton's surprising success at d... Start Learning for Free
Passage 2
Newton's surprising success at developing the laws of motion, as well as the development and refinement of other physical laws, led to the idea of scientific determinism. The first expression of this principle was in the beginning of the nineteenth century by Laplace, a French scientist. Laplace argued that if one knew the position and velocity of all the particles in the universe at a given time, the laws of physics would be able to predict the future state ofthe universe.
Scientific determinism held sway over a great many scientists until the early twentieth century, when the quantum mechanics revolution occurred. Quantum mechanics introduced the world to the idea of the uncertainty principle, which stated that it was impossible to accurately measure both the position and the velocity of a particle at one time. Because Laplace's omniscience could never occur, even in theory, the principle of scientific determinism was thrown into doubt. However, quantum mechanics does allow for a reduced form of scientific determinism. Even though physicists are unable to know precisely where a particle is and what its velocity is, they can determine certain probabilities about its position and velocity. These probabilities are called wave functions. By use of a formula known as the Schrodinger equation, a scientist with the wave function of a particle at a given time can calculate the particle's future wave function. These calculations can give the particle's position or velocity, but not both. Thus, the physicist is in possession of exactly half ofthe information needed to satisfy Laplace's view ofdeterminism. Unfortunately, under modern physics theories, that is far as any researcher can go in predicting the future.
Q. Which of the following best describes the organization of the passage?
  • a)
    A paradox is introduced, competing explanations are offered, and a final resolution is reached.
  • b)
    Two opposing theories are introduced, critiqued, and reconciled.
  • c)
    An idea is introduced, its validity is questioned, and its application qualified.
  • d)
    A theory is introduced, its mathematical basis is examined, and it is rejected.
Correct answer is option 'C'. Can you explain this answer?
Verified Answer
Passage 2Newton's surprising success at developing the laws of mot...
To answer this question, use your analytical reading skills to find the progression of the ideas. The first part of the paragraph introduces the idea of scientific determinism.
Next, the passage states that the principle was thrown into doubt. Finally, the passage indicates that physicists can reach half of the requirements for determinism but no more. That matches choice C best.
View all questions of this test
Explore Courses for UPSC exam

Similar UPSC Doubts

Passage 2Newtons surprising success at developing the laws of motion, as well as the development and refinement of other physical laws, led to the idea of scientific determinism. The first expression of this principle was in the beginning of the nineteenth century by Laplace, a French scientist. Laplace argued that if one knew the position and velocity of all the particles in the universe at a given time, the laws of physics would be able to predict the future state ofthe universe.Scientific determinism held sway over a great many scientists until the early twentieth century, when the quantum mechanics revolution occurred. Quantum mechanics introduced the world to the idea of the uncertainty principle, which stated that it was impossible to accurately measure both the position and the velocity of a particle at one time. Because Laplaces omniscience could never occur, even in theory, the principle of scientific determinism was thrown into doubt. However, quantum mechanics does allow for a reduced form of scientific determinism. Even though physicists are unable to know precisely where a particle is and what its velocity is, they can determine certain probabilities about its position and velocity. These probabilities are called wave functions. By use of a formula known as the Schrodinger equation, a scientist with the wave function of a particle at a given time can calculate the particles future wave function. These calculations can give the particles position or velocity, but not both. Thus, the physicist is in possession of exactly half ofthe information needed to satisfy Laplaces view ofdeterminism. Unfortunately, under modern physics theories, that is far as any researcher can go in predicting the future.Q. Which of the following, if true, would most strengthen the authors conclusion in the passages final sentence?

Passage 2Newtons surprising success at developing the laws of motion, as well as the development and refinement of other physical laws, led to the idea of scientific determinism. The first expression of this principle was in the beginning of the nineteenth century by Laplace, a French scientist. Laplace argued that if one knew the position and velocity of all the particles in the universe at a given time, the laws of physics would be able to predict the future state ofthe universe.Scientific determinism held sway over a great many scientists until the early twentieth century, when the quantum mechanics revolution occurred. Quantum mechanics introduced the world to the idea of the uncertainty principle, which stated that it was impossible to accurately measure both the position and the velocity of a particle at one time. Because Laplaces omniscience could never occur, even in theory, the principle of scientific determinism was thrown into doubt. However, quantum mechanics does allow for a reduced form of scientific determinism. Even though physicists are unable to know precisely where a particle is and what its velocity is, they can determine certain probabilities about its position and velocity. These probabilities are called wave functions. By use of a formula known as the Schrodinger equation, a scientist with the wave function of a particle at a given time can calculate the particles future wave function. These calculations can give the particles position or velocity, but not both. Thus, the physicist is in possession of exactly half ofthe information needed to satisfy Laplaces view ofdeterminism. Unfortunately, under modern physics theories, that is far as any researcher can go in predicting the future.Q. The passage suggests that if scientific determinism were true

Passage 2Newtons surprising success at developing the laws of motion, as well as the development and refinement of other physical laws, led to the idea of scientific determinism. The first expression of this principle was in the beginning of the nineteenth century by Laplace, a French scientist. Laplace argued that if one knew the position and velocity of all the particles in the universe at a given time, the laws of physics would be able to predict the future state ofthe universe.Scientific determinism held sway over a great many scientists until the early twentieth century, when the quantum mechanics revolution occurred. Quantum mechanics introduced the world to the idea of the uncertainty principle, which stated that it was impossible to accurately measure both the position and the velocity of a particle at one time. Because Laplaces omniscience could never occur, even in theory, the principle of scientific determinism was thrown into doubt. However, quantum mechanics does allow for a reduced form of scientific determinism. Even though physicists are unable to know precisely where a particle is and what its velocity is, they can determine certain probabilities about its position and velocity. These probabilities are called wave functions. By use of a formula known as the Schrodinger equation, a scientist with the wave function of a particle at a given time can calculate the particles future wave function. These calculations can give the particles position or velocity, but not both. Thus, the physicist is in possession of exactly half ofthe information needed to satisfy Laplaces view ofdeterminism. Unfortunately, under modern physics theories, that is far as any researcher can go in predicting the future.Q. According to the passage, wave functions

Top Courses for UPSC

Passage 2Newton's surprising success at developing the laws of motion, as well as the development and refinement of other physical laws, led to the idea of scientific determinism. The first expression of this principle was in the beginning of the nineteenth century by Laplace, a French scientist. Laplace argued that if one knew the position and velocity of all the particles in the universe at a given time, the laws of physics would be able to predict the future state ofthe universe.Scientific determinism held sway over a great many scientists until the early twentieth century, when the quantum mechanics revolution occurred. Quantum mechanics introduced the world to the idea of the uncertainty principle, which stated that it was impossible to accurately measure both the position and the velocity of a particle at one time. Because Laplace's omniscience could never occur, even in theory, the principle of scientific determinism was thrown into doubt. However, quantum mechanics does allow for a reduced form of scientific determinism. Even though physicists are unable to know precisely where a particle is and what its velocity is, they can determine certain probabilities about its position and velocity. These probabilities are called wave functions. By use of a formula known as the Schrodinger equation, a scientist with the wave function of a particle at a given time can calculate the particle's future wave function. These calculations can give the particle's position or velocity, but not both. Thus, the physicist is in possession of exactly half ofthe information needed to satisfy Laplace's view ofdeterminism. Unfortunately, under modern physics theories, that is far as any researcher can go in predicting the future.Q. Which of the following best describes the organization of the passage?a)A paradox is introduced, competing explanations are offered, and a final resolution is reached.b)Two opposing theories are introduced, critiqued, and reconciled.c)An idea is introduced, its validity is questioned, and its application qualified.d)A theory is introduced, its mathematical basis is examined, and it is rejected.Correct answer is option 'C'. Can you explain this answer?
Question Description
Passage 2Newton's surprising success at developing the laws of motion, as well as the development and refinement of other physical laws, led to the idea of scientific determinism. The first expression of this principle was in the beginning of the nineteenth century by Laplace, a French scientist. Laplace argued that if one knew the position and velocity of all the particles in the universe at a given time, the laws of physics would be able to predict the future state ofthe universe.Scientific determinism held sway over a great many scientists until the early twentieth century, when the quantum mechanics revolution occurred. Quantum mechanics introduced the world to the idea of the uncertainty principle, which stated that it was impossible to accurately measure both the position and the velocity of a particle at one time. Because Laplace's omniscience could never occur, even in theory, the principle of scientific determinism was thrown into doubt. However, quantum mechanics does allow for a reduced form of scientific determinism. Even though physicists are unable to know precisely where a particle is and what its velocity is, they can determine certain probabilities about its position and velocity. These probabilities are called wave functions. By use of a formula known as the Schrodinger equation, a scientist with the wave function of a particle at a given time can calculate the particle's future wave function. These calculations can give the particle's position or velocity, but not both. Thus, the physicist is in possession of exactly half ofthe information needed to satisfy Laplace's view ofdeterminism. Unfortunately, under modern physics theories, that is far as any researcher can go in predicting the future.Q. Which of the following best describes the organization of the passage?a)A paradox is introduced, competing explanations are offered, and a final resolution is reached.b)Two opposing theories are introduced, critiqued, and reconciled.c)An idea is introduced, its validity is questioned, and its application qualified.d)A theory is introduced, its mathematical basis is examined, and it is rejected.Correct answer is option 'C'. Can you explain this answer? for UPSC 2024 is part of UPSC preparation. The Question and answers have been prepared according to the UPSC exam syllabus. Information about Passage 2Newton's surprising success at developing the laws of motion, as well as the development and refinement of other physical laws, led to the idea of scientific determinism. The first expression of this principle was in the beginning of the nineteenth century by Laplace, a French scientist. Laplace argued that if one knew the position and velocity of all the particles in the universe at a given time, the laws of physics would be able to predict the future state ofthe universe.Scientific determinism held sway over a great many scientists until the early twentieth century, when the quantum mechanics revolution occurred. Quantum mechanics introduced the world to the idea of the uncertainty principle, which stated that it was impossible to accurately measure both the position and the velocity of a particle at one time. Because Laplace's omniscience could never occur, even in theory, the principle of scientific determinism was thrown into doubt. However, quantum mechanics does allow for a reduced form of scientific determinism. Even though physicists are unable to know precisely where a particle is and what its velocity is, they can determine certain probabilities about its position and velocity. These probabilities are called wave functions. By use of a formula known as the Schrodinger equation, a scientist with the wave function of a particle at a given time can calculate the particle's future wave function. These calculations can give the particle's position or velocity, but not both. Thus, the physicist is in possession of exactly half ofthe information needed to satisfy Laplace's view ofdeterminism. Unfortunately, under modern physics theories, that is far as any researcher can go in predicting the future.Q. Which of the following best describes the organization of the passage?a)A paradox is introduced, competing explanations are offered, and a final resolution is reached.b)Two opposing theories are introduced, critiqued, and reconciled.c)An idea is introduced, its validity is questioned, and its application qualified.d)A theory is introduced, its mathematical basis is examined, and it is rejected.Correct answer is option 'C'. Can you explain this answer? covers all topics & solutions for UPSC 2024 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for Passage 2Newton's surprising success at developing the laws of motion, as well as the development and refinement of other physical laws, led to the idea of scientific determinism. The first expression of this principle was in the beginning of the nineteenth century by Laplace, a French scientist. Laplace argued that if one knew the position and velocity of all the particles in the universe at a given time, the laws of physics would be able to predict the future state ofthe universe.Scientific determinism held sway over a great many scientists until the early twentieth century, when the quantum mechanics revolution occurred. Quantum mechanics introduced the world to the idea of the uncertainty principle, which stated that it was impossible to accurately measure both the position and the velocity of a particle at one time. Because Laplace's omniscience could never occur, even in theory, the principle of scientific determinism was thrown into doubt. However, quantum mechanics does allow for a reduced form of scientific determinism. Even though physicists are unable to know precisely where a particle is and what its velocity is, they can determine certain probabilities about its position and velocity. These probabilities are called wave functions. By use of a formula known as the Schrodinger equation, a scientist with the wave function of a particle at a given time can calculate the particle's future wave function. These calculations can give the particle's position or velocity, but not both. Thus, the physicist is in possession of exactly half ofthe information needed to satisfy Laplace's view ofdeterminism. Unfortunately, under modern physics theories, that is far as any researcher can go in predicting the future.Q. Which of the following best describes the organization of the passage?a)A paradox is introduced, competing explanations are offered, and a final resolution is reached.b)Two opposing theories are introduced, critiqued, and reconciled.c)An idea is introduced, its validity is questioned, and its application qualified.d)A theory is introduced, its mathematical basis is examined, and it is rejected.Correct answer is option 'C'. Can you explain this answer?.
Solutions for Passage 2Newton's surprising success at developing the laws of motion, as well as the development and refinement of other physical laws, led to the idea of scientific determinism. The first expression of this principle was in the beginning of the nineteenth century by Laplace, a French scientist. Laplace argued that if one knew the position and velocity of all the particles in the universe at a given time, the laws of physics would be able to predict the future state ofthe universe.Scientific determinism held sway over a great many scientists until the early twentieth century, when the quantum mechanics revolution occurred. Quantum mechanics introduced the world to the idea of the uncertainty principle, which stated that it was impossible to accurately measure both the position and the velocity of a particle at one time. Because Laplace's omniscience could never occur, even in theory, the principle of scientific determinism was thrown into doubt. However, quantum mechanics does allow for a reduced form of scientific determinism. Even though physicists are unable to know precisely where a particle is and what its velocity is, they can determine certain probabilities about its position and velocity. These probabilities are called wave functions. By use of a formula known as the Schrodinger equation, a scientist with the wave function of a particle at a given time can calculate the particle's future wave function. These calculations can give the particle's position or velocity, but not both. Thus, the physicist is in possession of exactly half ofthe information needed to satisfy Laplace's view ofdeterminism. Unfortunately, under modern physics theories, that is far as any researcher can go in predicting the future.Q. Which of the following best describes the organization of the passage?a)A paradox is introduced, competing explanations are offered, and a final resolution is reached.b)Two opposing theories are introduced, critiqued, and reconciled.c)An idea is introduced, its validity is questioned, and its application qualified.d)A theory is introduced, its mathematical basis is examined, and it is rejected.Correct answer is option 'C'. Can you explain this answer? in English & in Hindi are available as part of our courses for UPSC. Download more important topics, notes, lectures and mock test series for UPSC Exam by signing up for free.
Here you can find the meaning of Passage 2Newton's surprising success at developing the laws of motion, as well as the development and refinement of other physical laws, led to the idea of scientific determinism. The first expression of this principle was in the beginning of the nineteenth century by Laplace, a French scientist. Laplace argued that if one knew the position and velocity of all the particles in the universe at a given time, the laws of physics would be able to predict the future state ofthe universe.Scientific determinism held sway over a great many scientists until the early twentieth century, when the quantum mechanics revolution occurred. Quantum mechanics introduced the world to the idea of the uncertainty principle, which stated that it was impossible to accurately measure both the position and the velocity of a particle at one time. Because Laplace's omniscience could never occur, even in theory, the principle of scientific determinism was thrown into doubt. However, quantum mechanics does allow for a reduced form of scientific determinism. Even though physicists are unable to know precisely where a particle is and what its velocity is, they can determine certain probabilities about its position and velocity. These probabilities are called wave functions. By use of a formula known as the Schrodinger equation, a scientist with the wave function of a particle at a given time can calculate the particle's future wave function. These calculations can give the particle's position or velocity, but not both. Thus, the physicist is in possession of exactly half ofthe information needed to satisfy Laplace's view ofdeterminism. Unfortunately, under modern physics theories, that is far as any researcher can go in predicting the future.Q. Which of the following best describes the organization of the passage?a)A paradox is introduced, competing explanations are offered, and a final resolution is reached.b)Two opposing theories are introduced, critiqued, and reconciled.c)An idea is introduced, its validity is questioned, and its application qualified.d)A theory is introduced, its mathematical basis is examined, and it is rejected.Correct answer is option 'C'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of Passage 2Newton's surprising success at developing the laws of motion, as well as the development and refinement of other physical laws, led to the idea of scientific determinism. The first expression of this principle was in the beginning of the nineteenth century by Laplace, a French scientist. Laplace argued that if one knew the position and velocity of all the particles in the universe at a given time, the laws of physics would be able to predict the future state ofthe universe.Scientific determinism held sway over a great many scientists until the early twentieth century, when the quantum mechanics revolution occurred. Quantum mechanics introduced the world to the idea of the uncertainty principle, which stated that it was impossible to accurately measure both the position and the velocity of a particle at one time. Because Laplace's omniscience could never occur, even in theory, the principle of scientific determinism was thrown into doubt. However, quantum mechanics does allow for a reduced form of scientific determinism. Even though physicists are unable to know precisely where a particle is and what its velocity is, they can determine certain probabilities about its position and velocity. These probabilities are called wave functions. By use of a formula known as the Schrodinger equation, a scientist with the wave function of a particle at a given time can calculate the particle's future wave function. These calculations can give the particle's position or velocity, but not both. Thus, the physicist is in possession of exactly half ofthe information needed to satisfy Laplace's view ofdeterminism. Unfortunately, under modern physics theories, that is far as any researcher can go in predicting the future.Q. Which of the following best describes the organization of the passage?a)A paradox is introduced, competing explanations are offered, and a final resolution is reached.b)Two opposing theories are introduced, critiqued, and reconciled.c)An idea is introduced, its validity is questioned, and its application qualified.d)A theory is introduced, its mathematical basis is examined, and it is rejected.Correct answer is option 'C'. Can you explain this answer?, a detailed solution for Passage 2Newton's surprising success at developing the laws of motion, as well as the development and refinement of other physical laws, led to the idea of scientific determinism. The first expression of this principle was in the beginning of the nineteenth century by Laplace, a French scientist. Laplace argued that if one knew the position and velocity of all the particles in the universe at a given time, the laws of physics would be able to predict the future state ofthe universe.Scientific determinism held sway over a great many scientists until the early twentieth century, when the quantum mechanics revolution occurred. Quantum mechanics introduced the world to the idea of the uncertainty principle, which stated that it was impossible to accurately measure both the position and the velocity of a particle at one time. Because Laplace's omniscience could never occur, even in theory, the principle of scientific determinism was thrown into doubt. However, quantum mechanics does allow for a reduced form of scientific determinism. Even though physicists are unable to know precisely where a particle is and what its velocity is, they can determine certain probabilities about its position and velocity. These probabilities are called wave functions. By use of a formula known as the Schrodinger equation, a scientist with the wave function of a particle at a given time can calculate the particle's future wave function. These calculations can give the particle's position or velocity, but not both. Thus, the physicist is in possession of exactly half ofthe information needed to satisfy Laplace's view ofdeterminism. Unfortunately, under modern physics theories, that is far as any researcher can go in predicting the future.Q. Which of the following best describes the organization of the passage?a)A paradox is introduced, competing explanations are offered, and a final resolution is reached.b)Two opposing theories are introduced, critiqued, and reconciled.c)An idea is introduced, its validity is questioned, and its application qualified.d)A theory is introduced, its mathematical basis is examined, and it is rejected.Correct answer is option 'C'. Can you explain this answer? has been provided alongside types of Passage 2Newton's surprising success at developing the laws of motion, as well as the development and refinement of other physical laws, led to the idea of scientific determinism. The first expression of this principle was in the beginning of the nineteenth century by Laplace, a French scientist. Laplace argued that if one knew the position and velocity of all the particles in the universe at a given time, the laws of physics would be able to predict the future state ofthe universe.Scientific determinism held sway over a great many scientists until the early twentieth century, when the quantum mechanics revolution occurred. Quantum mechanics introduced the world to the idea of the uncertainty principle, which stated that it was impossible to accurately measure both the position and the velocity of a particle at one time. Because Laplace's omniscience could never occur, even in theory, the principle of scientific determinism was thrown into doubt. However, quantum mechanics does allow for a reduced form of scientific determinism. Even though physicists are unable to know precisely where a particle is and what its velocity is, they can determine certain probabilities about its position and velocity. These probabilities are called wave functions. By use of a formula known as the Schrodinger equation, a scientist with the wave function of a particle at a given time can calculate the particle's future wave function. These calculations can give the particle's position or velocity, but not both. Thus, the physicist is in possession of exactly half ofthe information needed to satisfy Laplace's view ofdeterminism. Unfortunately, under modern physics theories, that is far as any researcher can go in predicting the future.Q. Which of the following best describes the organization of the passage?a)A paradox is introduced, competing explanations are offered, and a final resolution is reached.b)Two opposing theories are introduced, critiqued, and reconciled.c)An idea is introduced, its validity is questioned, and its application qualified.d)A theory is introduced, its mathematical basis is examined, and it is rejected.Correct answer is option 'C'. Can you explain this answer? theory, EduRev gives you an ample number of questions to practice Passage 2Newton's surprising success at developing the laws of motion, as well as the development and refinement of other physical laws, led to the idea of scientific determinism. The first expression of this principle was in the beginning of the nineteenth century by Laplace, a French scientist. Laplace argued that if one knew the position and velocity of all the particles in the universe at a given time, the laws of physics would be able to predict the future state ofthe universe.Scientific determinism held sway over a great many scientists until the early twentieth century, when the quantum mechanics revolution occurred. Quantum mechanics introduced the world to the idea of the uncertainty principle, which stated that it was impossible to accurately measure both the position and the velocity of a particle at one time. Because Laplace's omniscience could never occur, even in theory, the principle of scientific determinism was thrown into doubt. However, quantum mechanics does allow for a reduced form of scientific determinism. Even though physicists are unable to know precisely where a particle is and what its velocity is, they can determine certain probabilities about its position and velocity. These probabilities are called wave functions. By use of a formula known as the Schrodinger equation, a scientist with the wave function of a particle at a given time can calculate the particle's future wave function. These calculations can give the particle's position or velocity, but not both. Thus, the physicist is in possession of exactly half ofthe information needed to satisfy Laplace's view ofdeterminism. Unfortunately, under modern physics theories, that is far as any researcher can go in predicting the future.Q. Which of the following best describes the organization of the passage?a)A paradox is introduced, competing explanations are offered, and a final resolution is reached.b)Two opposing theories are introduced, critiqued, and reconciled.c)An idea is introduced, its validity is questioned, and its application qualified.d)A theory is introduced, its mathematical basis is examined, and it is rejected.Correct answer is option 'C'. Can you explain this answer? tests, examples and also practice UPSC tests.
Explore Courses for UPSC exam

Top Courses for UPSC

Explore Courses
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev