UPSC Exam  >  UPSC Notes  >  Mathematics Optional Notes for UPSC  >  Cone and its properties

Cone and its properties | Mathematics Optional Notes for UPSC PDF Download

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


Edurev123 
5. Cone and its properties 
5.1 Prove that the normal from the point (?? ,?? ,?? ) to the paraboloid 
?? ?? ?? ?? +
?? ?? ?? ?? =?? ?? be 
on the cone 
?? ?? -?? -
?? ?? -?? +
?? ?? -?? ?? ?? -?? =?? 
(Note: There is an error in the question of (+) sign instead of (-) before second 
term.) 
(2009 : 20 Marks) 
Solution: 
Approach : From the general equation of normal passing through a point (?? ,?? ,?? ) 
eliminate the direction cosines. 
?? 2
?? 2
+
?? 2
?? 2
=2?? (??)
 
is given equation of paraboloid equation of tangent plane to paraboloid at (?? ,?? ,h) is 
????
?? 2
+
????
?? 2
=(?? +h) 
? Normal to paraboloid at (?? ,?? ,h) has direction cosines (
?? ?? 2
,
?? ?? 2
,-1) and the equation of 
normal is 
?? 2
(?? -?? )
?? =
?? 2
(?? -?? )
?? =
?? -h
-1
 
It passes through a point (?? ,?? ,?? ) if 
?? 2
(?? -?? )
?? =
?? 2
(?? -?? )
?? =
?? -h
-1
=?? (let) 
?                                               ?? =
?? 2
?? ?? 2
+?? ;?? =
?? 2
?? ?? 2
+?? ;h=?? +?? 
Now let any normal through (?? ,?? ,?? ) be 
Page 2


Edurev123 
5. Cone and its properties 
5.1 Prove that the normal from the point (?? ,?? ,?? ) to the paraboloid 
?? ?? ?? ?? +
?? ?? ?? ?? =?? ?? be 
on the cone 
?? ?? -?? -
?? ?? -?? +
?? ?? -?? ?? ?? -?? =?? 
(Note: There is an error in the question of (+) sign instead of (-) before second 
term.) 
(2009 : 20 Marks) 
Solution: 
Approach : From the general equation of normal passing through a point (?? ,?? ,?? ) 
eliminate the direction cosines. 
?? 2
?? 2
+
?? 2
?? 2
=2?? (??)
 
is given equation of paraboloid equation of tangent plane to paraboloid at (?? ,?? ,h) is 
????
?? 2
+
????
?? 2
=(?? +h) 
? Normal to paraboloid at (?? ,?? ,h) has direction cosines (
?? ?? 2
,
?? ?? 2
,-1) and the equation of 
normal is 
?? 2
(?? -?? )
?? =
?? 2
(?? -?? )
?? =
?? -h
-1
 
It passes through a point (?? ,?? ,?? ) if 
?? 2
(?? -?? )
?? =
?? 2
(?? -?? )
?? =
?? -h
-1
=?? (let) 
?                                               ?? =
?? 2
?? ?? 2
+?? ;?? =
?? 2
?? ?? 2
+?? ;h=?? +?? 
Now let any normal through (?? ,?? ,?? ) be 
                                                  
?? -?? ?? =
?? -?? ?? =
?? -?? ??                                                      (???? )
 Then,                                      
?? ?? /?? 2
=
?? ?? /?? 2
=
?? -1
 (any normal must have such d.c.'s) 
 ?                                    
??(?? 2
+?? )
?? =
?? (?? 2
+?? )
?? =
?? -1
 ?                                               
?? -1
=
?? 2
-?? 2
?? ?? -
?? ?? ?                                  ?? ?? (
?? ?? -
?? ?? )=?? 2
-?? 2
 
? Replacing ??,?? ,?? from (ii) 
?? ?? -?? -
?? ?? -?? +
?? 2
-?? 2
?? -?? =0 
5.2 Show that the cone ???? +???? +???? =?? cuts the sphere ?? ?? +?? ?? +?? ?? =?? ?? in two 
equal circles, and find their area. 
(2011 : 20 Marks) 
Solution: 
The given equations are 
                                                                     ?? 2
+?? 2
+?? 2
=?? 2
                                                              (??)  
??????                                                            ???? +???? +???? =0                                                                (???? ) 
Multiply (ii) by 2 and add it to (i), we get 
 or                       
?? 2
+?? 2
+?? 2
+2(???? +2?? +???? ) =?? 2
(?? +?? +?? )
2
 =?? 2
??? +?? +?? =±?? 
? The equations of the required circles are ·
 
?? 2
+?? 2
+?? 2
=?? 2
,?? +?? +?? =?? (?????? )
 ?? 2
+?? 2
+?? 2
=?? 2
,?? +?? +?? =-?? (???? )
 
Area of Circle (i) 
Centre of the sphere ?? 2
+?? 2
+?? 2
=?? 2
 is (0,0,0) . 
If ?? 1
 is the length of perpendicular from the centre (0,0,0) of the sphere ?? 2
+?? 2
+?? 2
=?? 2
 
to the plane ?? +?? +?? =?? , then 
?? 1
=|
0+0+0-?? v1+1+1
|=
?? v3
 
Page 3


Edurev123 
5. Cone and its properties 
5.1 Prove that the normal from the point (?? ,?? ,?? ) to the paraboloid 
?? ?? ?? ?? +
?? ?? ?? ?? =?? ?? be 
on the cone 
?? ?? -?? -
?? ?? -?? +
?? ?? -?? ?? ?? -?? =?? 
(Note: There is an error in the question of (+) sign instead of (-) before second 
term.) 
(2009 : 20 Marks) 
Solution: 
Approach : From the general equation of normal passing through a point (?? ,?? ,?? ) 
eliminate the direction cosines. 
?? 2
?? 2
+
?? 2
?? 2
=2?? (??)
 
is given equation of paraboloid equation of tangent plane to paraboloid at (?? ,?? ,h) is 
????
?? 2
+
????
?? 2
=(?? +h) 
? Normal to paraboloid at (?? ,?? ,h) has direction cosines (
?? ?? 2
,
?? ?? 2
,-1) and the equation of 
normal is 
?? 2
(?? -?? )
?? =
?? 2
(?? -?? )
?? =
?? -h
-1
 
It passes through a point (?? ,?? ,?? ) if 
?? 2
(?? -?? )
?? =
?? 2
(?? -?? )
?? =
?? -h
-1
=?? (let) 
?                                               ?? =
?? 2
?? ?? 2
+?? ;?? =
?? 2
?? ?? 2
+?? ;h=?? +?? 
Now let any normal through (?? ,?? ,?? ) be 
                                                  
?? -?? ?? =
?? -?? ?? =
?? -?? ??                                                      (???? )
 Then,                                      
?? ?? /?? 2
=
?? ?? /?? 2
=
?? -1
 (any normal must have such d.c.'s) 
 ?                                    
??(?? 2
+?? )
?? =
?? (?? 2
+?? )
?? =
?? -1
 ?                                               
?? -1
=
?? 2
-?? 2
?? ?? -
?? ?? ?                                  ?? ?? (
?? ?? -
?? ?? )=?? 2
-?? 2
 
? Replacing ??,?? ,?? from (ii) 
?? ?? -?? -
?? ?? -?? +
?? 2
-?? 2
?? -?? =0 
5.2 Show that the cone ???? +???? +???? =?? cuts the sphere ?? ?? +?? ?? +?? ?? =?? ?? in two 
equal circles, and find their area. 
(2011 : 20 Marks) 
Solution: 
The given equations are 
                                                                     ?? 2
+?? 2
+?? 2
=?? 2
                                                              (??)  
??????                                                            ???? +???? +???? =0                                                                (???? ) 
Multiply (ii) by 2 and add it to (i), we get 
 or                       
?? 2
+?? 2
+?? 2
+2(???? +2?? +???? ) =?? 2
(?? +?? +?? )
2
 =?? 2
??? +?? +?? =±?? 
? The equations of the required circles are ·
 
?? 2
+?? 2
+?? 2
=?? 2
,?? +?? +?? =?? (?????? )
 ?? 2
+?? 2
+?? 2
=?? 2
,?? +?? +?? =-?? (???? )
 
Area of Circle (i) 
Centre of the sphere ?? 2
+?? 2
+?? 2
=?? 2
 is (0,0,0) . 
If ?? 1
 is the length of perpendicular from the centre (0,0,0) of the sphere ?? 2
+?? 2
+?? 2
=?? 2
 
to the plane ?? +?? +?? =?? , then 
?? 1
=|
0+0+0-?? v1+1+1
|=
?? v3
 
? radius of the circle (iii) is 
?? 1
=v?? 2
-?? 1
2
=
v
?? 2
-
?? 2
3
=
v
2
3
?? 
Area of circle (iii) =?? ?? 1
2
 
=?? ·
2
3
?? 2
=
2?? 3
?? 2
 
Similarly area of circle (iv) is 
2?? 3
?? 2
 
5.3 A variable plane is parallel to the plane 
?? ?? +
?? ?? +
?? ?? =?? 
and meets the axes in ?? ,?? ,?? respectively. Prove that the circle ?????? lics on the 
cone 
???? (
?? ?? +
?? ?? )+???? (
?? ?? +
?? ?? )+???? (
?? ?? +
?? ?? )=?? 
(2012 : 20 Marks) 
Solution: 
The equation of any plane parallel to the given plane 
?? ?? +
?? ?? +
?? ?? =0 is 
?? ?? +
?? ?? +
?? ?? =?? (??) 
It is given that the plane (i) meets the co-ordinate axes in ?? ,?? and ?? 
??? ,?? and ?? are (???? ,0,0),(0,???? ,0) and (0,0,???? ) respectively. 
Equation of any sphere passing through the points ?? ,?? ,?? ,?? is 
                                                   ?? 2
+?? 2
+?? 2
-?????? -?????? -?????? =0 
  ????                                         ?? 2
+?? 2
+?? 2
-?? (???? -???? -???? )=0                                                      (???? ) 
The equation (i) and (ii) together represents the circle ?????? . 
Eliminating ?? from (i) and (ii), the required cone is : 
?? 2
+?? 2
+?? 2
-(
?? ?? +
?? ?? +
?? ?? )(???? +???? +???? )=0 
or        ???? (
?? ?? +
?? ?? )+???? (
?? ?? +
?? ?? )+???? (
?? ?? +
?? ?? )=0 
Page 4


Edurev123 
5. Cone and its properties 
5.1 Prove that the normal from the point (?? ,?? ,?? ) to the paraboloid 
?? ?? ?? ?? +
?? ?? ?? ?? =?? ?? be 
on the cone 
?? ?? -?? -
?? ?? -?? +
?? ?? -?? ?? ?? -?? =?? 
(Note: There is an error in the question of (+) sign instead of (-) before second 
term.) 
(2009 : 20 Marks) 
Solution: 
Approach : From the general equation of normal passing through a point (?? ,?? ,?? ) 
eliminate the direction cosines. 
?? 2
?? 2
+
?? 2
?? 2
=2?? (??)
 
is given equation of paraboloid equation of tangent plane to paraboloid at (?? ,?? ,h) is 
????
?? 2
+
????
?? 2
=(?? +h) 
? Normal to paraboloid at (?? ,?? ,h) has direction cosines (
?? ?? 2
,
?? ?? 2
,-1) and the equation of 
normal is 
?? 2
(?? -?? )
?? =
?? 2
(?? -?? )
?? =
?? -h
-1
 
It passes through a point (?? ,?? ,?? ) if 
?? 2
(?? -?? )
?? =
?? 2
(?? -?? )
?? =
?? -h
-1
=?? (let) 
?                                               ?? =
?? 2
?? ?? 2
+?? ;?? =
?? 2
?? ?? 2
+?? ;h=?? +?? 
Now let any normal through (?? ,?? ,?? ) be 
                                                  
?? -?? ?? =
?? -?? ?? =
?? -?? ??                                                      (???? )
 Then,                                      
?? ?? /?? 2
=
?? ?? /?? 2
=
?? -1
 (any normal must have such d.c.'s) 
 ?                                    
??(?? 2
+?? )
?? =
?? (?? 2
+?? )
?? =
?? -1
 ?                                               
?? -1
=
?? 2
-?? 2
?? ?? -
?? ?? ?                                  ?? ?? (
?? ?? -
?? ?? )=?? 2
-?? 2
 
? Replacing ??,?? ,?? from (ii) 
?? ?? -?? -
?? ?? -?? +
?? 2
-?? 2
?? -?? =0 
5.2 Show that the cone ???? +???? +???? =?? cuts the sphere ?? ?? +?? ?? +?? ?? =?? ?? in two 
equal circles, and find their area. 
(2011 : 20 Marks) 
Solution: 
The given equations are 
                                                                     ?? 2
+?? 2
+?? 2
=?? 2
                                                              (??)  
??????                                                            ???? +???? +???? =0                                                                (???? ) 
Multiply (ii) by 2 and add it to (i), we get 
 or                       
?? 2
+?? 2
+?? 2
+2(???? +2?? +???? ) =?? 2
(?? +?? +?? )
2
 =?? 2
??? +?? +?? =±?? 
? The equations of the required circles are ·
 
?? 2
+?? 2
+?? 2
=?? 2
,?? +?? +?? =?? (?????? )
 ?? 2
+?? 2
+?? 2
=?? 2
,?? +?? +?? =-?? (???? )
 
Area of Circle (i) 
Centre of the sphere ?? 2
+?? 2
+?? 2
=?? 2
 is (0,0,0) . 
If ?? 1
 is the length of perpendicular from the centre (0,0,0) of the sphere ?? 2
+?? 2
+?? 2
=?? 2
 
to the plane ?? +?? +?? =?? , then 
?? 1
=|
0+0+0-?? v1+1+1
|=
?? v3
 
? radius of the circle (iii) is 
?? 1
=v?? 2
-?? 1
2
=
v
?? 2
-
?? 2
3
=
v
2
3
?? 
Area of circle (iii) =?? ?? 1
2
 
=?? ·
2
3
?? 2
=
2?? 3
?? 2
 
Similarly area of circle (iv) is 
2?? 3
?? 2
 
5.3 A variable plane is parallel to the plane 
?? ?? +
?? ?? +
?? ?? =?? 
and meets the axes in ?? ,?? ,?? respectively. Prove that the circle ?????? lics on the 
cone 
???? (
?? ?? +
?? ?? )+???? (
?? ?? +
?? ?? )+???? (
?? ?? +
?? ?? )=?? 
(2012 : 20 Marks) 
Solution: 
The equation of any plane parallel to the given plane 
?? ?? +
?? ?? +
?? ?? =0 is 
?? ?? +
?? ?? +
?? ?? =?? (??) 
It is given that the plane (i) meets the co-ordinate axes in ?? ,?? and ?? 
??? ,?? and ?? are (???? ,0,0),(0,???? ,0) and (0,0,???? ) respectively. 
Equation of any sphere passing through the points ?? ,?? ,?? ,?? is 
                                                   ?? 2
+?? 2
+?? 2
-?????? -?????? -?????? =0 
  ????                                         ?? 2
+?? 2
+?? 2
-?? (???? -???? -???? )=0                                                      (???? ) 
The equation (i) and (ii) together represents the circle ?????? . 
Eliminating ?? from (i) and (ii), the required cone is : 
?? 2
+?? 2
+?? 2
-(
?? ?? +
?? ?? +
?? ?? )(???? +???? +???? )=0 
or        ???? (
?? ?? +
?? ?? )+???? (
?? ?? +
?? ?? )+???? (
?? ?? +
?? ?? )=0 
5.4 A cone has for its guiding curve the circle ?? ?? +?? ?? +?? ???? +?? ???? =?? ,?? =?? and 
passes through a fixed point (?? ,?? ,?? ) . If the section of the cone by the plane ?? =?? 
is a rectangular hyperbola, prove that the vertex lies on the fixed circle. 
?? ?? +?? ?? +?? ?? +?? ???? +?? ???? =?? ?? ???? +?? ???? +???? =?? 
(2013 : 15 Marks) 
Solution: 
Let ?? (?? ,?? ,?? ) be the vertex. 
Any line through ?? 
?? -?? ?? =
?? -?? ?? =
?? -?? ?? (??)
 
It passes through ?? =0 
?                                                            
?? -?? ?? =
?? -?? ?? =
-?? ?? 
?                                                     ?? =
-????
?? +?? ·?? =(
-????
?? +?? ) 
? Point of intersection with ?? =0 
(?? -
????
?? ,?? -
????
?? ,0) 
It lies on ?? 2
+?? 2
+2???? +2???? =0 
?                             (?? -
????
?? )
2
+(?? -
????
?? )
2
+2?? (?? -
????
?? )+2?? (?? -
????
?? )=0 
?                  (???? -???? )
2
+(???? -???? )2+2???? (???? -???? )+2???? (???? -???? )=0 
Eliminating ??,?? ,?? from (i) 
[?? (?? -?? )-?? (?? -?? )]
2
+[?? (?? -?? )-?? (?? -?? )]
2
+2?? (?? -?? )[?? (?? -?? )-(?? -?? )?? ]+2?? (?? -?? )[?? (?? -?? )-(?? -?? )?? ]=0 
?                 (???? -???? )
2
+(???? -???? )
2
+2?? (?? -?? )(???? -???? )+2?? (?? -?? )(???? -???? )=0                  (???? ) 
Intersection with ?? =0 of (ii) 
(???? -???? )
2
+(???? )
2
+2?? (?? -?? )(???? -???? )+2?? (?? -?? )(???? )=0 
This is rectangular hyperbola if 
Page 5


Edurev123 
5. Cone and its properties 
5.1 Prove that the normal from the point (?? ,?? ,?? ) to the paraboloid 
?? ?? ?? ?? +
?? ?? ?? ?? =?? ?? be 
on the cone 
?? ?? -?? -
?? ?? -?? +
?? ?? -?? ?? ?? -?? =?? 
(Note: There is an error in the question of (+) sign instead of (-) before second 
term.) 
(2009 : 20 Marks) 
Solution: 
Approach : From the general equation of normal passing through a point (?? ,?? ,?? ) 
eliminate the direction cosines. 
?? 2
?? 2
+
?? 2
?? 2
=2?? (??)
 
is given equation of paraboloid equation of tangent plane to paraboloid at (?? ,?? ,h) is 
????
?? 2
+
????
?? 2
=(?? +h) 
? Normal to paraboloid at (?? ,?? ,h) has direction cosines (
?? ?? 2
,
?? ?? 2
,-1) and the equation of 
normal is 
?? 2
(?? -?? )
?? =
?? 2
(?? -?? )
?? =
?? -h
-1
 
It passes through a point (?? ,?? ,?? ) if 
?? 2
(?? -?? )
?? =
?? 2
(?? -?? )
?? =
?? -h
-1
=?? (let) 
?                                               ?? =
?? 2
?? ?? 2
+?? ;?? =
?? 2
?? ?? 2
+?? ;h=?? +?? 
Now let any normal through (?? ,?? ,?? ) be 
                                                  
?? -?? ?? =
?? -?? ?? =
?? -?? ??                                                      (???? )
 Then,                                      
?? ?? /?? 2
=
?? ?? /?? 2
=
?? -1
 (any normal must have such d.c.'s) 
 ?                                    
??(?? 2
+?? )
?? =
?? (?? 2
+?? )
?? =
?? -1
 ?                                               
?? -1
=
?? 2
-?? 2
?? ?? -
?? ?? ?                                  ?? ?? (
?? ?? -
?? ?? )=?? 2
-?? 2
 
? Replacing ??,?? ,?? from (ii) 
?? ?? -?? -
?? ?? -?? +
?? 2
-?? 2
?? -?? =0 
5.2 Show that the cone ???? +???? +???? =?? cuts the sphere ?? ?? +?? ?? +?? ?? =?? ?? in two 
equal circles, and find their area. 
(2011 : 20 Marks) 
Solution: 
The given equations are 
                                                                     ?? 2
+?? 2
+?? 2
=?? 2
                                                              (??)  
??????                                                            ???? +???? +???? =0                                                                (???? ) 
Multiply (ii) by 2 and add it to (i), we get 
 or                       
?? 2
+?? 2
+?? 2
+2(???? +2?? +???? ) =?? 2
(?? +?? +?? )
2
 =?? 2
??? +?? +?? =±?? 
? The equations of the required circles are ·
 
?? 2
+?? 2
+?? 2
=?? 2
,?? +?? +?? =?? (?????? )
 ?? 2
+?? 2
+?? 2
=?? 2
,?? +?? +?? =-?? (???? )
 
Area of Circle (i) 
Centre of the sphere ?? 2
+?? 2
+?? 2
=?? 2
 is (0,0,0) . 
If ?? 1
 is the length of perpendicular from the centre (0,0,0) of the sphere ?? 2
+?? 2
+?? 2
=?? 2
 
to the plane ?? +?? +?? =?? , then 
?? 1
=|
0+0+0-?? v1+1+1
|=
?? v3
 
? radius of the circle (iii) is 
?? 1
=v?? 2
-?? 1
2
=
v
?? 2
-
?? 2
3
=
v
2
3
?? 
Area of circle (iii) =?? ?? 1
2
 
=?? ·
2
3
?? 2
=
2?? 3
?? 2
 
Similarly area of circle (iv) is 
2?? 3
?? 2
 
5.3 A variable plane is parallel to the plane 
?? ?? +
?? ?? +
?? ?? =?? 
and meets the axes in ?? ,?? ,?? respectively. Prove that the circle ?????? lics on the 
cone 
???? (
?? ?? +
?? ?? )+???? (
?? ?? +
?? ?? )+???? (
?? ?? +
?? ?? )=?? 
(2012 : 20 Marks) 
Solution: 
The equation of any plane parallel to the given plane 
?? ?? +
?? ?? +
?? ?? =0 is 
?? ?? +
?? ?? +
?? ?? =?? (??) 
It is given that the plane (i) meets the co-ordinate axes in ?? ,?? and ?? 
??? ,?? and ?? are (???? ,0,0),(0,???? ,0) and (0,0,???? ) respectively. 
Equation of any sphere passing through the points ?? ,?? ,?? ,?? is 
                                                   ?? 2
+?? 2
+?? 2
-?????? -?????? -?????? =0 
  ????                                         ?? 2
+?? 2
+?? 2
-?? (???? -???? -???? )=0                                                      (???? ) 
The equation (i) and (ii) together represents the circle ?????? . 
Eliminating ?? from (i) and (ii), the required cone is : 
?? 2
+?? 2
+?? 2
-(
?? ?? +
?? ?? +
?? ?? )(???? +???? +???? )=0 
or        ???? (
?? ?? +
?? ?? )+???? (
?? ?? +
?? ?? )+???? (
?? ?? +
?? ?? )=0 
5.4 A cone has for its guiding curve the circle ?? ?? +?? ?? +?? ???? +?? ???? =?? ,?? =?? and 
passes through a fixed point (?? ,?? ,?? ) . If the section of the cone by the plane ?? =?? 
is a rectangular hyperbola, prove that the vertex lies on the fixed circle. 
?? ?? +?? ?? +?? ?? +?? ???? +?? ???? =?? ?? ???? +?? ???? +???? =?? 
(2013 : 15 Marks) 
Solution: 
Let ?? (?? ,?? ,?? ) be the vertex. 
Any line through ?? 
?? -?? ?? =
?? -?? ?? =
?? -?? ?? (??)
 
It passes through ?? =0 
?                                                            
?? -?? ?? =
?? -?? ?? =
-?? ?? 
?                                                     ?? =
-????
?? +?? ·?? =(
-????
?? +?? ) 
? Point of intersection with ?? =0 
(?? -
????
?? ,?? -
????
?? ,0) 
It lies on ?? 2
+?? 2
+2???? +2???? =0 
?                             (?? -
????
?? )
2
+(?? -
????
?? )
2
+2?? (?? -
????
?? )+2?? (?? -
????
?? )=0 
?                  (???? -???? )
2
+(???? -???? )2+2???? (???? -???? )+2???? (???? -???? )=0 
Eliminating ??,?? ,?? from (i) 
[?? (?? -?? )-?? (?? -?? )]
2
+[?? (?? -?? )-?? (?? -?? )]
2
+2?? (?? -?? )[?? (?? -?? )-(?? -?? )?? ]+2?? (?? -?? )[?? (?? -?? )-(?? -?? )?? ]=0 
?                 (???? -???? )
2
+(???? -???? )
2
+2?? (?? -?? )(???? -???? )+2?? (?? -?? )(???? -???? )=0                  (???? ) 
Intersection with ?? =0 of (ii) 
(???? -???? )
2
+(???? )
2
+2?? (?? -?? )(???? -???? )+2?? (?? -?? )(???? )=0 
This is rectangular hyperbola if 
Coefficient of ?? 2
+ Coefficieni of ?? 2
=0 
? ?? 2
+?? 2
+?? 2
+2???? +2???? =0 (?????? ) 
(ii) passes through fixed point (0,0,?? ) 
?                            (???? )
2
+(???? )
2
+2?? (?? -?? )???? +2?? (?? -?? )???? =0                                                     
?                          (?? 2
+?? 2
+2???? +2???? )?? 2
-2???????? -2???????? =0                                             (???? ) 
Using (ii), (iii) & (iv) are equivalent to 
-?? 2
?? 2
-2(???? +???? )???? =0
???? (2???? +2???? +???? ) =0
 
?                                                                   (2???? +2???? +???? )=0                                              (?? ) 
as ???? is not identically zero. 
? (iii) and (iv) are required conditions. 
Locus of ?? (?? ,?? ,?? ) is 
?? 2
+?? 2
+?? 2
+2???? +2???? =0
2???? +2???? +???? =0
 
5.5 Examine whether the plane ?? +?? +?? =?? cuts the cone ???? +???? +???? =?? in 
perpendicular lines. 
(2014 : 10 Marks) 
Solution: 
From the equation of plane and the cone it is clear that the lines of intensities passes 
through origin. 
Let equation of lines be 
?? ?? =
?? ?? =
?? ?? (??) 
(i) must satisfy equation of plane and cone. 
So,
?? +?? +?? =0 (???? ) 
and                                                             ???? +???? +???? =0 
From (ii) and (iii) 
???? +(?? +?? )×-(?? +?? )=0 
Read More
387 videos|203 docs
Related Searches

Viva Questions

,

Cone and its properties | Mathematics Optional Notes for UPSC

,

Extra Questions

,

Free

,

Important questions

,

pdf

,

mock tests for examination

,

video lectures

,

Sample Paper

,

past year papers

,

shortcuts and tricks

,

Objective type Questions

,

MCQs

,

Semester Notes

,

Cone and its properties | Mathematics Optional Notes for UPSC

,

study material

,

Summary

,

ppt

,

Cone and its properties | Mathematics Optional Notes for UPSC

,

Exam

,

practice quizzes

,

Previous Year Questions with Solutions

;