UPSC Exam  >  UPSC Notes  >  Mathematics Optional Notes for UPSC  >  Curves in Space

Curves in Space | Mathematics Optional Notes for UPSC PDF Download

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


Edurev123 
6. Curves in Space 
6.1 Find ?? /?? for the curve 
??? (?? )=?? ?????? ?? ??ˆ+?? ?????? ?? ??ˆ+???? ??ˆ
 
(2010: 12 Marks) 
Solution: 
Given: 
                                          ?? (?? )=?? cos ?? ??ˆ+?? sin ??ˆ+???? ??ˆ
                                       
?? ?? (?? )
????
=-?? sin ?? ??ˆ+?? cos ??ˆ+?? ??ˆ
                                     
?? 2
?? (?? )
?? ?? 2
=-?? cos ?? ??ˆ-?? sin ??ˆ
                                     
?? 3
?? (?? )
?? ?? 3
=?? sin ?? ??ˆ-?? cos ??ˆ
                     
?? ?? (?? )
????
×
?? 2
?? (?? )
?? ?? 2
=|
??ˆ ??ˆ ??ˆ
-?? sin ?? ?? cos ?? ?? -?? cos ?? -?? sin ?? 0
|
                                                   =??ˆ(0+???? sin ?? )-?? (0+???? cos ?? )+??ˆ
(?? 2
sin
2
 ?? +?? 2
cos
2
 ?? )
                                                   =???? sin ?? ??ˆ-???? cos ??ˆ+?? 2
??ˆ
                                               ?? =
|
????
????
×
?? 2
?? ?? ?? 2
|
|
????
????
|
3
=
|???? sin ?? ??ˆ-???? cos ??ˆ+?? 2
??ˆ
|
|-?? sin ?? ??ˆ+?? cos ??ˆ+?? ??ˆ3
                                                  =
(?? 2
?? 2
sin
2
 ?? -?? 2
?? 2
cos
2
 ?? +?? 4
)
1/2
(?? 2
sin
2
 ?? +?? 2
cos
2
 ?? +?? 2
)
3/2
=
(?? 2
?? 2
+?? 4
)
1/2
(?? 2
+?? 2
)
3/2
                                                  =
?? (?? 2
+?? 2
)
1/2
(?? 2
+?? 2
)
3/2
=
?? ?? 2
+?? 2
                                               ?? =
[
????
????
?? 2
?? ?? ?? 2
?? 3
?? ?? ?? 3
]
|
????
????
×
?? 2
?? ?? ?? 2
|
2
=
(
????
????
×
?? 2
?? ?? ?? 2
)·
?? 3
?? ?? ?? 3
|
????
????
×
?? 2
?? ?? ?? 2
|
2
                                                  =
(???? sin ?? ??ˆ-???? cos ?? ??ˆ+?? 2
??ˆ
)·(?? sin ?? ??ˆ-?? cos ?? ??ˆ)
|???? sin ?? ??ˆ-???? cos ?? ??ˆ+?? 2
??ˆ
|
2
 
Page 2


Edurev123 
6. Curves in Space 
6.1 Find ?? /?? for the curve 
??? (?? )=?? ?????? ?? ??ˆ+?? ?????? ?? ??ˆ+???? ??ˆ
 
(2010: 12 Marks) 
Solution: 
Given: 
                                          ?? (?? )=?? cos ?? ??ˆ+?? sin ??ˆ+???? ??ˆ
                                       
?? ?? (?? )
????
=-?? sin ?? ??ˆ+?? cos ??ˆ+?? ??ˆ
                                     
?? 2
?? (?? )
?? ?? 2
=-?? cos ?? ??ˆ-?? sin ??ˆ
                                     
?? 3
?? (?? )
?? ?? 3
=?? sin ?? ??ˆ-?? cos ??ˆ
                     
?? ?? (?? )
????
×
?? 2
?? (?? )
?? ?? 2
=|
??ˆ ??ˆ ??ˆ
-?? sin ?? ?? cos ?? ?? -?? cos ?? -?? sin ?? 0
|
                                                   =??ˆ(0+???? sin ?? )-?? (0+???? cos ?? )+??ˆ
(?? 2
sin
2
 ?? +?? 2
cos
2
 ?? )
                                                   =???? sin ?? ??ˆ-???? cos ??ˆ+?? 2
??ˆ
                                               ?? =
|
????
????
×
?? 2
?? ?? ?? 2
|
|
????
????
|
3
=
|???? sin ?? ??ˆ-???? cos ??ˆ+?? 2
??ˆ
|
|-?? sin ?? ??ˆ+?? cos ??ˆ+?? ??ˆ3
                                                  =
(?? 2
?? 2
sin
2
 ?? -?? 2
?? 2
cos
2
 ?? +?? 4
)
1/2
(?? 2
sin
2
 ?? +?? 2
cos
2
 ?? +?? 2
)
3/2
=
(?? 2
?? 2
+?? 4
)
1/2
(?? 2
+?? 2
)
3/2
                                                  =
?? (?? 2
+?? 2
)
1/2
(?? 2
+?? 2
)
3/2
=
?? ?? 2
+?? 2
                                               ?? =
[
????
????
?? 2
?? ?? ?? 2
?? 3
?? ?? ?? 3
]
|
????
????
×
?? 2
?? ?? ?? 2
|
2
=
(
????
????
×
?? 2
?? ?? ?? 2
)·
?? 3
?? ?? ?? 3
|
????
????
×
?? 2
?? ?? ?? 2
|
2
                                                  =
(???? sin ?? ??ˆ-???? cos ?? ??ˆ+?? 2
??ˆ
)·(?? sin ?? ??ˆ-?? cos ?? ??ˆ)
|???? sin ?? ??ˆ-???? cos ?? ??ˆ+?? 2
??ˆ
|
2
 
 =
?? 2
?? sin
2
 ?? +?? 2
?? cos
2
 ?? (?? 2
?? 2
+?? 4
)
=
?? 2
?? ?? 2
(?? 2
+?? 2
)
=
?? ?? 2
+?? 2
?? ?? =
?? ?? 2
+?? 2
?? ?? 2
+?? 2
=
?? ?? 
6.2 Derive the Frenet-Serret formulae. Define the curvature and torsion for a space 
curve. Compute them for the-space curve 
?? =?? ,?? =?? ?? ,?? =
?? ?? ?? ?? 
Show that the curvature and torsion are equal for this curve. 
(2012 : 20 Marks) 
Solution: 
-The following three relations are known as Serret-Frenet formulae: 
?? '
 =???? (??)
?? '
 =???? -???? (???? )
?? '
 =-???? (?????? )
 
where, ?? is the magnitude of curvature, ?? is the magnitude of torsion, ?? ?? ?? ,?? are the unit 
tangent vector, the unit principal normal vector and the unit bi-normal vector respectively 
and ' } ' denotec the differentiation w.r.t. the arc length ?? . 
Derivation: We know 
?? 2
=1 
Differentiating it w.r.t. the arc length ?? , 
?? ·?? '
=0??? '
 is perpendicular to ?? .  
The equation of the oscillating plane at a point ?? (??) of the curve is 
[?? -?? ,?? ;?? '
)=0 
This equation shows that ?? '
 lies in the oscillating plane and hence ?? '
 is perpendicular to 
the binormal ?? (since oscillating plane is perpendicular to ?? ). 
??? '
 is parallel to ?? ×?? . 
??? is parallel to ?? . 
?                                                                     ?? '
=±???? 
Page 3


Edurev123 
6. Curves in Space 
6.1 Find ?? /?? for the curve 
??? (?? )=?? ?????? ?? ??ˆ+?? ?????? ?? ??ˆ+???? ??ˆ
 
(2010: 12 Marks) 
Solution: 
Given: 
                                          ?? (?? )=?? cos ?? ??ˆ+?? sin ??ˆ+???? ??ˆ
                                       
?? ?? (?? )
????
=-?? sin ?? ??ˆ+?? cos ??ˆ+?? ??ˆ
                                     
?? 2
?? (?? )
?? ?? 2
=-?? cos ?? ??ˆ-?? sin ??ˆ
                                     
?? 3
?? (?? )
?? ?? 3
=?? sin ?? ??ˆ-?? cos ??ˆ
                     
?? ?? (?? )
????
×
?? 2
?? (?? )
?? ?? 2
=|
??ˆ ??ˆ ??ˆ
-?? sin ?? ?? cos ?? ?? -?? cos ?? -?? sin ?? 0
|
                                                   =??ˆ(0+???? sin ?? )-?? (0+???? cos ?? )+??ˆ
(?? 2
sin
2
 ?? +?? 2
cos
2
 ?? )
                                                   =???? sin ?? ??ˆ-???? cos ??ˆ+?? 2
??ˆ
                                               ?? =
|
????
????
×
?? 2
?? ?? ?? 2
|
|
????
????
|
3
=
|???? sin ?? ??ˆ-???? cos ??ˆ+?? 2
??ˆ
|
|-?? sin ?? ??ˆ+?? cos ??ˆ+?? ??ˆ3
                                                  =
(?? 2
?? 2
sin
2
 ?? -?? 2
?? 2
cos
2
 ?? +?? 4
)
1/2
(?? 2
sin
2
 ?? +?? 2
cos
2
 ?? +?? 2
)
3/2
=
(?? 2
?? 2
+?? 4
)
1/2
(?? 2
+?? 2
)
3/2
                                                  =
?? (?? 2
+?? 2
)
1/2
(?? 2
+?? 2
)
3/2
=
?? ?? 2
+?? 2
                                               ?? =
[
????
????
?? 2
?? ?? ?? 2
?? 3
?? ?? ?? 3
]
|
????
????
×
?? 2
?? ?? ?? 2
|
2
=
(
????
????
×
?? 2
?? ?? ?? 2
)·
?? 3
?? ?? ?? 3
|
????
????
×
?? 2
?? ?? ?? 2
|
2
                                                  =
(???? sin ?? ??ˆ-???? cos ?? ??ˆ+?? 2
??ˆ
)·(?? sin ?? ??ˆ-?? cos ?? ??ˆ)
|???? sin ?? ??ˆ-???? cos ?? ??ˆ+?? 2
??ˆ
|
2
 
 =
?? 2
?? sin
2
 ?? +?? 2
?? cos
2
 ?? (?? 2
?? 2
+?? 4
)
=
?? 2
?? ?? 2
(?? 2
+?? 2
)
=
?? ?? 2
+?? 2
?? ?? =
?? ?? 2
+?? 2
?? ?? 2
+?? 2
=
?? ?? 
6.2 Derive the Frenet-Serret formulae. Define the curvature and torsion for a space 
curve. Compute them for the-space curve 
?? =?? ,?? =?? ?? ,?? =
?? ?? ?? ?? 
Show that the curvature and torsion are equal for this curve. 
(2012 : 20 Marks) 
Solution: 
-The following three relations are known as Serret-Frenet formulae: 
?? '
 =???? (??)
?? '
 =???? -???? (???? )
?? '
 =-???? (?????? )
 
where, ?? is the magnitude of curvature, ?? is the magnitude of torsion, ?? ?? ?? ,?? are the unit 
tangent vector, the unit principal normal vector and the unit bi-normal vector respectively 
and ' } ' denotec the differentiation w.r.t. the arc length ?? . 
Derivation: We know 
?? 2
=1 
Differentiating it w.r.t. the arc length ?? , 
?? ·?? '
=0??? '
 is perpendicular to ?? .  
The equation of the oscillating plane at a point ?? (??) of the curve is 
[?? -?? ,?? ;?? '
)=0 
This equation shows that ?? '
 lies in the oscillating plane and hence ?? '
 is perpendicular to 
the binormal ?? (since oscillating plane is perpendicular to ?? ). 
??? '
 is parallel to ?? ×?? . 
??? is parallel to ?? . 
?                                                                     ?? '
=±???? 
But we choose the direction ?? so that the curvature ?? is aiways positive, i.e., we take 
?? '
=???? which proves (i) Again, we know that ?? 2
=1. 
Differentiating w.r.t. the are length ?? , 
?? ·?? '
 =0??? '
 is perpendicular to ?? . 
Also,                                         ?? ·?? '
=0                                                                                  (???? ) 
Differentiating w.r.t. ?? 
?? '
·?? +?? ·?? '
=0??? '
·?? +?? ·???? =0
?? '
·?? =0
 
?                                    ?? '
perpendicular to ??                                                                        (?? ) 
From (iv) and ( ?? ), ?? '
 is perpendicular to both ?? and ?? . 
??? '
 is parallel to ?? ×?? . 
??? '
 is parallel to ?? 
???? ?????? ?????????? ,                             ?? '
=????
???? ???????????????????? ,???? h??????          ?? '
=-???? , which proves (iii). 
 
We know,                                       ?? =?? ×?? 
Differentiating w.r.t. S, 
                                                             
?? '
 =?? '
×?? +?? ×?? '
 =-???? ×?? +?? ×????                                (???????? (??)?????? (?????? ))
 =???? -???? , which proves (ii). 
 
Curvature: The arc rate at which the tangent changes direction as the point ?? (?? ) moves 
along the curve is called the curvature vector of the curve and its magnitude is denoted 
by ?? . 
Torsion: The arc rate at which the bi-normal changes direction as the point ?? (?? ) moves 
along the curve is called the torsion vector of the curve and its magnitude is denoted by 
?? . 
Given :                           ?? =?? ,?? =?? 2
,?? =
2
3
?? 3
  
Let                                   ?? =(?? ,?? 2
,
2
3
?? 3
) 
                                          ?? =(1,2?? ,2?? 2
),???
 
=(0,2,4?? ) 
Page 4


Edurev123 
6. Curves in Space 
6.1 Find ?? /?? for the curve 
??? (?? )=?? ?????? ?? ??ˆ+?? ?????? ?? ??ˆ+???? ??ˆ
 
(2010: 12 Marks) 
Solution: 
Given: 
                                          ?? (?? )=?? cos ?? ??ˆ+?? sin ??ˆ+???? ??ˆ
                                       
?? ?? (?? )
????
=-?? sin ?? ??ˆ+?? cos ??ˆ+?? ??ˆ
                                     
?? 2
?? (?? )
?? ?? 2
=-?? cos ?? ??ˆ-?? sin ??ˆ
                                     
?? 3
?? (?? )
?? ?? 3
=?? sin ?? ??ˆ-?? cos ??ˆ
                     
?? ?? (?? )
????
×
?? 2
?? (?? )
?? ?? 2
=|
??ˆ ??ˆ ??ˆ
-?? sin ?? ?? cos ?? ?? -?? cos ?? -?? sin ?? 0
|
                                                   =??ˆ(0+???? sin ?? )-?? (0+???? cos ?? )+??ˆ
(?? 2
sin
2
 ?? +?? 2
cos
2
 ?? )
                                                   =???? sin ?? ??ˆ-???? cos ??ˆ+?? 2
??ˆ
                                               ?? =
|
????
????
×
?? 2
?? ?? ?? 2
|
|
????
????
|
3
=
|???? sin ?? ??ˆ-???? cos ??ˆ+?? 2
??ˆ
|
|-?? sin ?? ??ˆ+?? cos ??ˆ+?? ??ˆ3
                                                  =
(?? 2
?? 2
sin
2
 ?? -?? 2
?? 2
cos
2
 ?? +?? 4
)
1/2
(?? 2
sin
2
 ?? +?? 2
cos
2
 ?? +?? 2
)
3/2
=
(?? 2
?? 2
+?? 4
)
1/2
(?? 2
+?? 2
)
3/2
                                                  =
?? (?? 2
+?? 2
)
1/2
(?? 2
+?? 2
)
3/2
=
?? ?? 2
+?? 2
                                               ?? =
[
????
????
?? 2
?? ?? ?? 2
?? 3
?? ?? ?? 3
]
|
????
????
×
?? 2
?? ?? ?? 2
|
2
=
(
????
????
×
?? 2
?? ?? ?? 2
)·
?? 3
?? ?? ?? 3
|
????
????
×
?? 2
?? ?? ?? 2
|
2
                                                  =
(???? sin ?? ??ˆ-???? cos ?? ??ˆ+?? 2
??ˆ
)·(?? sin ?? ??ˆ-?? cos ?? ??ˆ)
|???? sin ?? ??ˆ-???? cos ?? ??ˆ+?? 2
??ˆ
|
2
 
 =
?? 2
?? sin
2
 ?? +?? 2
?? cos
2
 ?? (?? 2
?? 2
+?? 4
)
=
?? 2
?? ?? 2
(?? 2
+?? 2
)
=
?? ?? 2
+?? 2
?? ?? =
?? ?? 2
+?? 2
?? ?? 2
+?? 2
=
?? ?? 
6.2 Derive the Frenet-Serret formulae. Define the curvature and torsion for a space 
curve. Compute them for the-space curve 
?? =?? ,?? =?? ?? ,?? =
?? ?? ?? ?? 
Show that the curvature and torsion are equal for this curve. 
(2012 : 20 Marks) 
Solution: 
-The following three relations are known as Serret-Frenet formulae: 
?? '
 =???? (??)
?? '
 =???? -???? (???? )
?? '
 =-???? (?????? )
 
where, ?? is the magnitude of curvature, ?? is the magnitude of torsion, ?? ?? ?? ,?? are the unit 
tangent vector, the unit principal normal vector and the unit bi-normal vector respectively 
and ' } ' denotec the differentiation w.r.t. the arc length ?? . 
Derivation: We know 
?? 2
=1 
Differentiating it w.r.t. the arc length ?? , 
?? ·?? '
=0??? '
 is perpendicular to ?? .  
The equation of the oscillating plane at a point ?? (??) of the curve is 
[?? -?? ,?? ;?? '
)=0 
This equation shows that ?? '
 lies in the oscillating plane and hence ?? '
 is perpendicular to 
the binormal ?? (since oscillating plane is perpendicular to ?? ). 
??? '
 is parallel to ?? ×?? . 
??? is parallel to ?? . 
?                                                                     ?? '
=±???? 
But we choose the direction ?? so that the curvature ?? is aiways positive, i.e., we take 
?? '
=???? which proves (i) Again, we know that ?? 2
=1. 
Differentiating w.r.t. the are length ?? , 
?? ·?? '
 =0??? '
 is perpendicular to ?? . 
Also,                                         ?? ·?? '
=0                                                                                  (???? ) 
Differentiating w.r.t. ?? 
?? '
·?? +?? ·?? '
=0??? '
·?? +?? ·???? =0
?? '
·?? =0
 
?                                    ?? '
perpendicular to ??                                                                        (?? ) 
From (iv) and ( ?? ), ?? '
 is perpendicular to both ?? and ?? . 
??? '
 is parallel to ?? ×?? . 
??? '
 is parallel to ?? 
???? ?????? ?????????? ,                             ?? '
=????
???? ???????????????????? ,???? h??????          ?? '
=-???? , which proves (iii). 
 
We know,                                       ?? =?? ×?? 
Differentiating w.r.t. S, 
                                                             
?? '
 =?? '
×?? +?? ×?? '
 =-???? ×?? +?? ×????                                (???????? (??)?????? (?????? ))
 =???? -???? , which proves (ii). 
 
Curvature: The arc rate at which the tangent changes direction as the point ?? (?? ) moves 
along the curve is called the curvature vector of the curve and its magnitude is denoted 
by ?? . 
Torsion: The arc rate at which the bi-normal changes direction as the point ?? (?? ) moves 
along the curve is called the torsion vector of the curve and its magnitude is denoted by 
?? . 
Given :                           ?? =?? ,?? =?? 2
,?? =
2
3
?? 3
  
Let                                   ?? =(?? ,?? 2
,
2
3
?? 3
) 
                                          ?? =(1,2?? ,2?? 2
),???
 
=(0,2,4?? ) 
                                ???
 
×?? =|
?? ?? ??? 
1 2?? 2?? 2
0 2 4?? | 
                                       =?? (8?? 2
-4?? 2
)+?? (0-4?? )+??? 
(2)
                                       =(4?? 1
2
-4?? 1
+2)
 ?                     |?? ×?? |=v16?? 4
+4?? 2
+4=2(2?? 2
+1)
                         [?? ,?? ,?? ]=?? ×?? ×?? 
                                       =(4?? 1
2
-4?? 1
2
)(0,0,4)
                                       =8
 ?            Torsion, ?? =
|?? ×?? |
|?? |
=
2(2?? 2
+1)
(1+4?? 2
+4?? 4
)
3/2
                                       =
2
(2?? 2
+1)
3
?????????????????? ,             ?? =
[?? ,?? ,?? ]
|???×??¨|
2
                                      =
8
4(2?? 2
+1)
2
=
2
(2?? 2
+1)
2
 
6.3 Show that the curve ???? (?? )=?? ??ˆ+(
?? +?? ?? )??ˆ+
(?? -?? ?? )
?? ??ˆ
 lies in a plane. 
(2013 : 10 Marks) 
Solution: 
For the curve to lie in a plane the binormal ?? must point in a constant direction as one 
moves along the curve. 
??.?? .,                               
????
????
=0
?                                  -???? =0??? =0
 
i.e., torsion must be zero. 
?? =
[?????¨???]
(???×??¨)·(???×??¨)
 
?????? ,                                                           ??? =
?? ?? 
????
=??ˆ+(-?? -2
)??ˆ-(?? -2
+1)??ˆ
??¨ =
?? 2
?? 
?? ?? 2
=2?? -3
??ˆ+2?? -3
??ˆ
??? =
?? 3
?? 
?? ?? 3
=-6?? -4
??ˆ-6?? -4
??ˆ
??¨×??? =|
?? ?? ?? 0 2?? -3
2?? -3
0 -6?? -4
-6?? -4
|=0
[?????¨ ???] =0
 
Page 5


Edurev123 
6. Curves in Space 
6.1 Find ?? /?? for the curve 
??? (?? )=?? ?????? ?? ??ˆ+?? ?????? ?? ??ˆ+???? ??ˆ
 
(2010: 12 Marks) 
Solution: 
Given: 
                                          ?? (?? )=?? cos ?? ??ˆ+?? sin ??ˆ+???? ??ˆ
                                       
?? ?? (?? )
????
=-?? sin ?? ??ˆ+?? cos ??ˆ+?? ??ˆ
                                     
?? 2
?? (?? )
?? ?? 2
=-?? cos ?? ??ˆ-?? sin ??ˆ
                                     
?? 3
?? (?? )
?? ?? 3
=?? sin ?? ??ˆ-?? cos ??ˆ
                     
?? ?? (?? )
????
×
?? 2
?? (?? )
?? ?? 2
=|
??ˆ ??ˆ ??ˆ
-?? sin ?? ?? cos ?? ?? -?? cos ?? -?? sin ?? 0
|
                                                   =??ˆ(0+???? sin ?? )-?? (0+???? cos ?? )+??ˆ
(?? 2
sin
2
 ?? +?? 2
cos
2
 ?? )
                                                   =???? sin ?? ??ˆ-???? cos ??ˆ+?? 2
??ˆ
                                               ?? =
|
????
????
×
?? 2
?? ?? ?? 2
|
|
????
????
|
3
=
|???? sin ?? ??ˆ-???? cos ??ˆ+?? 2
??ˆ
|
|-?? sin ?? ??ˆ+?? cos ??ˆ+?? ??ˆ3
                                                  =
(?? 2
?? 2
sin
2
 ?? -?? 2
?? 2
cos
2
 ?? +?? 4
)
1/2
(?? 2
sin
2
 ?? +?? 2
cos
2
 ?? +?? 2
)
3/2
=
(?? 2
?? 2
+?? 4
)
1/2
(?? 2
+?? 2
)
3/2
                                                  =
?? (?? 2
+?? 2
)
1/2
(?? 2
+?? 2
)
3/2
=
?? ?? 2
+?? 2
                                               ?? =
[
????
????
?? 2
?? ?? ?? 2
?? 3
?? ?? ?? 3
]
|
????
????
×
?? 2
?? ?? ?? 2
|
2
=
(
????
????
×
?? 2
?? ?? ?? 2
)·
?? 3
?? ?? ?? 3
|
????
????
×
?? 2
?? ?? ?? 2
|
2
                                                  =
(???? sin ?? ??ˆ-???? cos ?? ??ˆ+?? 2
??ˆ
)·(?? sin ?? ??ˆ-?? cos ?? ??ˆ)
|???? sin ?? ??ˆ-???? cos ?? ??ˆ+?? 2
??ˆ
|
2
 
 =
?? 2
?? sin
2
 ?? +?? 2
?? cos
2
 ?? (?? 2
?? 2
+?? 4
)
=
?? 2
?? ?? 2
(?? 2
+?? 2
)
=
?? ?? 2
+?? 2
?? ?? =
?? ?? 2
+?? 2
?? ?? 2
+?? 2
=
?? ?? 
6.2 Derive the Frenet-Serret formulae. Define the curvature and torsion for a space 
curve. Compute them for the-space curve 
?? =?? ,?? =?? ?? ,?? =
?? ?? ?? ?? 
Show that the curvature and torsion are equal for this curve. 
(2012 : 20 Marks) 
Solution: 
-The following three relations are known as Serret-Frenet formulae: 
?? '
 =???? (??)
?? '
 =???? -???? (???? )
?? '
 =-???? (?????? )
 
where, ?? is the magnitude of curvature, ?? is the magnitude of torsion, ?? ?? ?? ,?? are the unit 
tangent vector, the unit principal normal vector and the unit bi-normal vector respectively 
and ' } ' denotec the differentiation w.r.t. the arc length ?? . 
Derivation: We know 
?? 2
=1 
Differentiating it w.r.t. the arc length ?? , 
?? ·?? '
=0??? '
 is perpendicular to ?? .  
The equation of the oscillating plane at a point ?? (??) of the curve is 
[?? -?? ,?? ;?? '
)=0 
This equation shows that ?? '
 lies in the oscillating plane and hence ?? '
 is perpendicular to 
the binormal ?? (since oscillating plane is perpendicular to ?? ). 
??? '
 is parallel to ?? ×?? . 
??? is parallel to ?? . 
?                                                                     ?? '
=±???? 
But we choose the direction ?? so that the curvature ?? is aiways positive, i.e., we take 
?? '
=???? which proves (i) Again, we know that ?? 2
=1. 
Differentiating w.r.t. the are length ?? , 
?? ·?? '
 =0??? '
 is perpendicular to ?? . 
Also,                                         ?? ·?? '
=0                                                                                  (???? ) 
Differentiating w.r.t. ?? 
?? '
·?? +?? ·?? '
=0??? '
·?? +?? ·???? =0
?? '
·?? =0
 
?                                    ?? '
perpendicular to ??                                                                        (?? ) 
From (iv) and ( ?? ), ?? '
 is perpendicular to both ?? and ?? . 
??? '
 is parallel to ?? ×?? . 
??? '
 is parallel to ?? 
???? ?????? ?????????? ,                             ?? '
=????
???? ???????????????????? ,???? h??????          ?? '
=-???? , which proves (iii). 
 
We know,                                       ?? =?? ×?? 
Differentiating w.r.t. S, 
                                                             
?? '
 =?? '
×?? +?? ×?? '
 =-???? ×?? +?? ×????                                (???????? (??)?????? (?????? ))
 =???? -???? , which proves (ii). 
 
Curvature: The arc rate at which the tangent changes direction as the point ?? (?? ) moves 
along the curve is called the curvature vector of the curve and its magnitude is denoted 
by ?? . 
Torsion: The arc rate at which the bi-normal changes direction as the point ?? (?? ) moves 
along the curve is called the torsion vector of the curve and its magnitude is denoted by 
?? . 
Given :                           ?? =?? ,?? =?? 2
,?? =
2
3
?? 3
  
Let                                   ?? =(?? ,?? 2
,
2
3
?? 3
) 
                                          ?? =(1,2?? ,2?? 2
),???
 
=(0,2,4?? ) 
                                ???
 
×?? =|
?? ?? ??? 
1 2?? 2?? 2
0 2 4?? | 
                                       =?? (8?? 2
-4?? 2
)+?? (0-4?? )+??? 
(2)
                                       =(4?? 1
2
-4?? 1
+2)
 ?                     |?? ×?? |=v16?? 4
+4?? 2
+4=2(2?? 2
+1)
                         [?? ,?? ,?? ]=?? ×?? ×?? 
                                       =(4?? 1
2
-4?? 1
2
)(0,0,4)
                                       =8
 ?            Torsion, ?? =
|?? ×?? |
|?? |
=
2(2?? 2
+1)
(1+4?? 2
+4?? 4
)
3/2
                                       =
2
(2?? 2
+1)
3
?????????????????? ,             ?? =
[?? ,?? ,?? ]
|???×??¨|
2
                                      =
8
4(2?? 2
+1)
2
=
2
(2?? 2
+1)
2
 
6.3 Show that the curve ???? (?? )=?? ??ˆ+(
?? +?? ?? )??ˆ+
(?? -?? ?? )
?? ??ˆ
 lies in a plane. 
(2013 : 10 Marks) 
Solution: 
For the curve to lie in a plane the binormal ?? must point in a constant direction as one 
moves along the curve. 
??.?? .,                               
????
????
=0
?                                  -???? =0??? =0
 
i.e., torsion must be zero. 
?? =
[?????¨???]
(???×??¨)·(???×??¨)
 
?????? ,                                                           ??? =
?? ?? 
????
=??ˆ+(-?? -2
)??ˆ-(?? -2
+1)??ˆ
??¨ =
?? 2
?? 
?? ?? 2
=2?? -3
??ˆ+2?? -3
??ˆ
??? =
?? 3
?? 
?? ?? 3
=-6?? -4
??ˆ-6?? -4
??ˆ
??¨×??? =|
?? ?? ?? 0 2?? -3
2?? -3
0 -6?? -4
-6?? -4
|=0
[?????¨ ???] =0
 
?                                                                 ?? =0 
So, the curve lies in a plane. 
6.4 Find the curvature vector at any point of the curve ??? (?? )=?? ?????? ?? ??ˆ+?? ?????? ?? ??ˆ,?? =
?? =?? ?? . Give its magnitude also. 
(2014 : 10 Marks) 
Solution: 
The position vector ??  of any point on the given curve is ??  
                          ?? =?? cos ?? ??ˆ+??sin ?? ??ˆ
 i.e.,                  ?? =(?? cos ?? ,?? sin ?? )
 ?                  
?? ?? 
????
=(cos ?? -?? sin ?? +sin ?? +?? cos ?? )
?????? ,             
????
????
=|
?? ?? 
????
|
                              =vcos
2
 ?? +?? 2
sin
2
 ?? -2?? cos ?? sin ?? +sin
2
 ?? +?? 2
cos
2
 ?? +2?? cos ?? sin ??                              =v1+?? 2
 ?????????? ,??          =
?? ?? 
????
=
?? ?? /????
???? /????
=
1
v1+?? 2
(cos ?? -?? sin ?? ,sin ?? +?? cos ?? )
 
Differentiating this w.r.t. ?? , we get 
????
????
=???? =
???? /????
???? /????
=
1
v1+?? 2
·
????
????
=
1
v1+?? 2
[(sin ?? -sin ?? -?? cos ?? )v1+?? 2
-
1
2v1+?? 2
(2?? )(cos ?? -?? sin ?? )
(cos ?? +cos ?? -?? sin ?? )v1+?? 2
-
1
2v1+?? 2
(2?? )(sin ?? +?? cos ?? )·
1
(1+?? 2
)
]
 
 =
1
v1+?? 2
·
1
(1+?? 2
)
[
(-2sin ?? -?? cos ?? )(1+?? 2
)-?? (cos ?? +sin ?? )
v1+?? 2
(2cos ?? -?? sin ?? )(1+?? 2
)-?? (?? sin ?? +?? cos ?? )
v1-?? 2
]
kN=
1
(1+?? 2
)
2
(-(2+?? 2
)(sin ?? +cos ?? ),(2+?? 2
)(cos ?? -sin ?? ))
kN=
(2+?? 2
)
(1+?? 2
)
2
(sin ?? +cos ?? )??ˆ+(
2+?? (1+?? )
2
·cos ?? -sin ?? )??ˆ
 
which is the required curvature vector 
Read More
387 videos|203 docs
Related Searches

Sample Paper

,

practice quizzes

,

MCQs

,

Objective type Questions

,

Previous Year Questions with Solutions

,

Summary

,

Semester Notes

,

pdf

,

mock tests for examination

,

Curves in Space | Mathematics Optional Notes for UPSC

,

past year papers

,

ppt

,

Extra Questions

,

Curves in Space | Mathematics Optional Notes for UPSC

,

video lectures

,

Exam

,

shortcuts and tricks

,

Important questions

,

Curves in Space | Mathematics Optional Notes for UPSC

,

Free

,

Viva Questions

,

study material

;