UPSC Exam  >  UPSC Notes  >  Mathematics Optional Notes for UPSC  >  Ellipsoid and its Properties

Ellipsoid and its Properties | Mathematics Optional Notes for UPSC PDF Download

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


Edurev123 
7. Ellipsoid and its Properties 
7.1 Three points ?? ,?? ,?? are taken on the ellipsoid 
?? ?? ?? ?? +
?? ?? ?? ?? +
?? ?? ?? ?? =?? so that the lines 
joining ?? ,?? ,?? to the origin are mutually perpendicular: Prove that the plane ?????? 
touches a fixed sphere. 
(2011 : 20 Marks) 
Solution: 
Let the equation of the plane ?????? be 
???? +???? +???? =1 (??) 
The equation of the given ellipsoid is 
?? 2
?? 2
+
?? 2
?? 2
+
?? 2
?? 2
=1 (???? )
 
The equation of the cone with vertex at (0,0,0) and the curve of intersection of (i) and the 
ellipsoid (ii) as the guiding curve is 
?? 2
?? 2
+
?? 2
?? 2
+
?? 2
?? 2
=(???? +???? +???? )
2
(?????? )
 
If the cone (iii) has three mutually perpendicular generators then 
Coefficient of ?? 2
+ Coefficient of ?? 2
+ Coefficient of ?? 2
=0 
 ? (?? 2
-
1
?? 2
)+(?? 2
-
1
?? 2
)+(?? 2
-
1
?? 2
)=0 
     ?                            ?? 2
+?? 2
+?? 2
=
1
?? 2
+
1
?? 2
+
1
?? 2
=
1
?? 2
(?????? )                                                     (???? ) 
If the plane (i) touches the sphere ?? 2
+?? 2
+?? 2
=?? 2
, then the length of the perpendicular 
from the centre (0,0,0) of the sphere to (i) must be equal to the radius ?? of the sphere. 
i.e., 
1
v?? 2
+?? 2
+?? 2
=?? 
?                                                                    ?? 2
+?? 2
+?? 2
=
1
?? 2
, which is true by virtue of (iv).  
Hence, the plane (i) touches the sphere ?? 2
+?? 2
+?? 2
=?? 2
. 
Page 2


Edurev123 
7. Ellipsoid and its Properties 
7.1 Three points ?? ,?? ,?? are taken on the ellipsoid 
?? ?? ?? ?? +
?? ?? ?? ?? +
?? ?? ?? ?? =?? so that the lines 
joining ?? ,?? ,?? to the origin are mutually perpendicular: Prove that the plane ?????? 
touches a fixed sphere. 
(2011 : 20 Marks) 
Solution: 
Let the equation of the plane ?????? be 
???? +???? +???? =1 (??) 
The equation of the given ellipsoid is 
?? 2
?? 2
+
?? 2
?? 2
+
?? 2
?? 2
=1 (???? )
 
The equation of the cone with vertex at (0,0,0) and the curve of intersection of (i) and the 
ellipsoid (ii) as the guiding curve is 
?? 2
?? 2
+
?? 2
?? 2
+
?? 2
?? 2
=(???? +???? +???? )
2
(?????? )
 
If the cone (iii) has three mutually perpendicular generators then 
Coefficient of ?? 2
+ Coefficient of ?? 2
+ Coefficient of ?? 2
=0 
 ? (?? 2
-
1
?? 2
)+(?? 2
-
1
?? 2
)+(?? 2
-
1
?? 2
)=0 
     ?                            ?? 2
+?? 2
+?? 2
=
1
?? 2
+
1
?? 2
+
1
?? 2
=
1
?? 2
(?????? )                                                     (???? ) 
If the plane (i) touches the sphere ?? 2
+?? 2
+?? 2
=?? 2
, then the length of the perpendicular 
from the centre (0,0,0) of the sphere to (i) must be equal to the radius ?? of the sphere. 
i.e., 
1
v?? 2
+?? 2
+?? 2
=?? 
?                                                                    ?? 2
+?? 2
+?? 2
=
1
?? 2
, which is true by virtue of (iv).  
Hence, the plane (i) touches the sphere ?? 2
+?? 2
+?? 2
=?? 2
. 
7.2 Find the length of the normal chord through a point ?? of the ellipsoid 
?? ?? ?? ?? +
?? ?? ?? ?? +
?? ?? ?? ?? =?? 
and prove that if it is equal to ?? ?? ?? ?? , where ?? ?? is the point where the nomal chord 
through ?? meets the ???? -plane, then ?? lies on the cone 
?? ?? ?? ?? (?? ?? ?? -?? ?? )+
?? ?? ?? ?? (?? ?? ?? -?? ?? )+
?? ?? ?? ?? =?? 
(2019 : 15 Marks) 
Solution: 
Let ?? be (?? ,?? ,?? ) , then the equations of the normal to the given ellipsoid at ?? (?? ,?? ,?? ) are 
?? -?? (???? /?? 2
)
 =
?? -?? (???? /?? 2
)
=
?? -?? (???? /?? 2
)
=?? (say) (1)
1
?? 2
 =
?? 2
?? 4
+
?? 2
?? 4
+
?? 2
?? 4
(2)
 
? The co-ordinates of any point ?? on the normal (1) are (?? +
????
?? 2
,?? +
????
?? 2
?? ,?? +
????
?? 2
?? ) 
where ?? is the distance of ?? from ?? . 
If ?? lies on the given ellipsoid i.e., ???? is the normal chord, then 
1
?? 2
(?? +
????
?? 2
?? )
2
+
1
?? 2
(?? +
????
?? 2
?? )
2
+
1
?? 2
(?? +
????
?? 2
)
2
=1
=?? 2
?? 2
(
?? 2
?? 6
+
?? 2
?? 6
+
?? 2
?? 6
)+2???? (
?? 2
?? 4
+
?? 2
?? 4
+
?? 4
?? 4
)+(
?? 2
?? 2
+
?? 2
?? 2
+
?? 2
?? 2
)=1
=?? 2
?? 2
(
?? 2
?? 6
+
?? 2
?? 6
+
?? 2
?? 6
)+2???? (
1
?? 2
)=0
 
From (2) and S
?? 2
?? 2
=1 as ?? (?? ,?? ,?? ) lies on the given coincoid. 
?? =
-2
?? 3
(
?? 2
?? 6
+
?? 2
?? 6
+
?? 2
?? 6
)
= length of normal chord ???? (3)
 
Also, let the normal at ?? (?? ,?? ,?? ) meets the coordinate planes viz., ???? ,???? and ???? planes 
at ?? 1
,?? 2
 and ?? 3
 then puling ?? =0,?? =0 and ?? =0 in succession in the eqn. (1), we have 
respectively, 
Given, 
?? ?? 1
=-
?? 2
?? ,?? ?? 2
=-
?? 2
?? and ?? ?? 3
=
?? 2
?? (4)
 
Page 3


Edurev123 
7. Ellipsoid and its Properties 
7.1 Three points ?? ,?? ,?? are taken on the ellipsoid 
?? ?? ?? ?? +
?? ?? ?? ?? +
?? ?? ?? ?? =?? so that the lines 
joining ?? ,?? ,?? to the origin are mutually perpendicular: Prove that the plane ?????? 
touches a fixed sphere. 
(2011 : 20 Marks) 
Solution: 
Let the equation of the plane ?????? be 
???? +???? +???? =1 (??) 
The equation of the given ellipsoid is 
?? 2
?? 2
+
?? 2
?? 2
+
?? 2
?? 2
=1 (???? )
 
The equation of the cone with vertex at (0,0,0) and the curve of intersection of (i) and the 
ellipsoid (ii) as the guiding curve is 
?? 2
?? 2
+
?? 2
?? 2
+
?? 2
?? 2
=(???? +???? +???? )
2
(?????? )
 
If the cone (iii) has three mutually perpendicular generators then 
Coefficient of ?? 2
+ Coefficient of ?? 2
+ Coefficient of ?? 2
=0 
 ? (?? 2
-
1
?? 2
)+(?? 2
-
1
?? 2
)+(?? 2
-
1
?? 2
)=0 
     ?                            ?? 2
+?? 2
+?? 2
=
1
?? 2
+
1
?? 2
+
1
?? 2
=
1
?? 2
(?????? )                                                     (???? ) 
If the plane (i) touches the sphere ?? 2
+?? 2
+?? 2
=?? 2
, then the length of the perpendicular 
from the centre (0,0,0) of the sphere to (i) must be equal to the radius ?? of the sphere. 
i.e., 
1
v?? 2
+?? 2
+?? 2
=?? 
?                                                                    ?? 2
+?? 2
+?? 2
=
1
?? 2
, which is true by virtue of (iv).  
Hence, the plane (i) touches the sphere ?? 2
+?? 2
+?? 2
=?? 2
. 
7.2 Find the length of the normal chord through a point ?? of the ellipsoid 
?? ?? ?? ?? +
?? ?? ?? ?? +
?? ?? ?? ?? =?? 
and prove that if it is equal to ?? ?? ?? ?? , where ?? ?? is the point where the nomal chord 
through ?? meets the ???? -plane, then ?? lies on the cone 
?? ?? ?? ?? (?? ?? ?? -?? ?? )+
?? ?? ?? ?? (?? ?? ?? -?? ?? )+
?? ?? ?? ?? =?? 
(2019 : 15 Marks) 
Solution: 
Let ?? be (?? ,?? ,?? ) , then the equations of the normal to the given ellipsoid at ?? (?? ,?? ,?? ) are 
?? -?? (???? /?? 2
)
 =
?? -?? (???? /?? 2
)
=
?? -?? (???? /?? 2
)
=?? (say) (1)
1
?? 2
 =
?? 2
?? 4
+
?? 2
?? 4
+
?? 2
?? 4
(2)
 
? The co-ordinates of any point ?? on the normal (1) are (?? +
????
?? 2
,?? +
????
?? 2
?? ,?? +
????
?? 2
?? ) 
where ?? is the distance of ?? from ?? . 
If ?? lies on the given ellipsoid i.e., ???? is the normal chord, then 
1
?? 2
(?? +
????
?? 2
?? )
2
+
1
?? 2
(?? +
????
?? 2
?? )
2
+
1
?? 2
(?? +
????
?? 2
)
2
=1
=?? 2
?? 2
(
?? 2
?? 6
+
?? 2
?? 6
+
?? 2
?? 6
)+2???? (
?? 2
?? 4
+
?? 2
?? 4
+
?? 4
?? 4
)+(
?? 2
?? 2
+
?? 2
?? 2
+
?? 2
?? 2
)=1
=?? 2
?? 2
(
?? 2
?? 6
+
?? 2
?? 6
+
?? 2
?? 6
)+2???? (
1
?? 2
)=0
 
From (2) and S
?? 2
?? 2
=1 as ?? (?? ,?? ,?? ) lies on the given coincoid. 
?? =
-2
?? 3
(
?? 2
?? 6
+
?? 2
?? 6
+
?? 2
?? 6
)
= length of normal chord ???? (3)
 
Also, let the normal at ?? (?? ,?? ,?? ) meets the coordinate planes viz., ???? ,???? and ???? planes 
at ?? 1
,?? 2
 and ?? 3
 then puling ?? =0,?? =0 and ?? =0 in succession in the eqn. (1), we have 
respectively, 
Given, 
?? ?? 1
=-
?? 2
?? ,?? ?? 2
=-
?? 2
?? and ?? ?? 3
=
?? 2
?? (4)
 
?????????? ,                       ???? =4?? ?? 3
 
  ???? =4(-
?? 2
?? )
?                                     
-2
?? 3
(
?? 2
?? 6
+
?? 2
?? 6
+
?? 2
?? 6
)
=4(-
?? 2
?? )
?                                     
?? 2
?? 6
(2?? 2
-?? 2
)+
?? 2
?? 6
(2?? 2
-?? 2
)+
?? 2
?? 6
(2?? 2
-?? 2
)=0
 
? The locus of ?? (?? ,?? ,?? ) is 
 
?? 2
?? 5
(2?? 2
-?? 2
)+
?? 2
?? 6
(2?? 2
-?? 2
)+
?? 2
?? 4
=0. Hence, Proved. 
7.3 Find the equations of the tangent plane to the ellipsoid ?? ?? ?? +?? ?? ?? +?? ?? ?? =???? 
which passes through the line ?? -?? -?? =?? =?? -?? +?? ?? -?? . 
(2020 : 10 Marks) 
Solution: 
Given line                                     ?? -?? -?? =0-?? -?? +2?? -9                                                (??) 
Equation of any plane through given line (i) 
?? -?? -?? +?? (?? -?? +2?? -9)=0 
?                                       ?? (1+?? )+?? (-1-?? )+?? (-1+2?? )=9??                                         (???? ) 
If this plane (ii) touches given ellipsoid then applying 
?? 2
?? +
?? 2
?? +
?? 2
?? =?? 2
(?????? )
 
Given ellipsoid 
2?? 2
+6?? 2
+3?? 2
=27 
?                                                     
2
27
?? 2
+
6
27
?? 2
+
3
27
?? 2
=1         
?                                                          
2
27
?? 2
+
2
9
?? 2
+
1
9
?? 2
=1         
 ?                                                                                        ?? =
2
27
,?? =
2
9
,?? =
1
9
         
 
So from (iii) 
Page 4


Edurev123 
7. Ellipsoid and its Properties 
7.1 Three points ?? ,?? ,?? are taken on the ellipsoid 
?? ?? ?? ?? +
?? ?? ?? ?? +
?? ?? ?? ?? =?? so that the lines 
joining ?? ,?? ,?? to the origin are mutually perpendicular: Prove that the plane ?????? 
touches a fixed sphere. 
(2011 : 20 Marks) 
Solution: 
Let the equation of the plane ?????? be 
???? +???? +???? =1 (??) 
The equation of the given ellipsoid is 
?? 2
?? 2
+
?? 2
?? 2
+
?? 2
?? 2
=1 (???? )
 
The equation of the cone with vertex at (0,0,0) and the curve of intersection of (i) and the 
ellipsoid (ii) as the guiding curve is 
?? 2
?? 2
+
?? 2
?? 2
+
?? 2
?? 2
=(???? +???? +???? )
2
(?????? )
 
If the cone (iii) has three mutually perpendicular generators then 
Coefficient of ?? 2
+ Coefficient of ?? 2
+ Coefficient of ?? 2
=0 
 ? (?? 2
-
1
?? 2
)+(?? 2
-
1
?? 2
)+(?? 2
-
1
?? 2
)=0 
     ?                            ?? 2
+?? 2
+?? 2
=
1
?? 2
+
1
?? 2
+
1
?? 2
=
1
?? 2
(?????? )                                                     (???? ) 
If the plane (i) touches the sphere ?? 2
+?? 2
+?? 2
=?? 2
, then the length of the perpendicular 
from the centre (0,0,0) of the sphere to (i) must be equal to the radius ?? of the sphere. 
i.e., 
1
v?? 2
+?? 2
+?? 2
=?? 
?                                                                    ?? 2
+?? 2
+?? 2
=
1
?? 2
, which is true by virtue of (iv).  
Hence, the plane (i) touches the sphere ?? 2
+?? 2
+?? 2
=?? 2
. 
7.2 Find the length of the normal chord through a point ?? of the ellipsoid 
?? ?? ?? ?? +
?? ?? ?? ?? +
?? ?? ?? ?? =?? 
and prove that if it is equal to ?? ?? ?? ?? , where ?? ?? is the point where the nomal chord 
through ?? meets the ???? -plane, then ?? lies on the cone 
?? ?? ?? ?? (?? ?? ?? -?? ?? )+
?? ?? ?? ?? (?? ?? ?? -?? ?? )+
?? ?? ?? ?? =?? 
(2019 : 15 Marks) 
Solution: 
Let ?? be (?? ,?? ,?? ) , then the equations of the normal to the given ellipsoid at ?? (?? ,?? ,?? ) are 
?? -?? (???? /?? 2
)
 =
?? -?? (???? /?? 2
)
=
?? -?? (???? /?? 2
)
=?? (say) (1)
1
?? 2
 =
?? 2
?? 4
+
?? 2
?? 4
+
?? 2
?? 4
(2)
 
? The co-ordinates of any point ?? on the normal (1) are (?? +
????
?? 2
,?? +
????
?? 2
?? ,?? +
????
?? 2
?? ) 
where ?? is the distance of ?? from ?? . 
If ?? lies on the given ellipsoid i.e., ???? is the normal chord, then 
1
?? 2
(?? +
????
?? 2
?? )
2
+
1
?? 2
(?? +
????
?? 2
?? )
2
+
1
?? 2
(?? +
????
?? 2
)
2
=1
=?? 2
?? 2
(
?? 2
?? 6
+
?? 2
?? 6
+
?? 2
?? 6
)+2???? (
?? 2
?? 4
+
?? 2
?? 4
+
?? 4
?? 4
)+(
?? 2
?? 2
+
?? 2
?? 2
+
?? 2
?? 2
)=1
=?? 2
?? 2
(
?? 2
?? 6
+
?? 2
?? 6
+
?? 2
?? 6
)+2???? (
1
?? 2
)=0
 
From (2) and S
?? 2
?? 2
=1 as ?? (?? ,?? ,?? ) lies on the given coincoid. 
?? =
-2
?? 3
(
?? 2
?? 6
+
?? 2
?? 6
+
?? 2
?? 6
)
= length of normal chord ???? (3)
 
Also, let the normal at ?? (?? ,?? ,?? ) meets the coordinate planes viz., ???? ,???? and ???? planes 
at ?? 1
,?? 2
 and ?? 3
 then puling ?? =0,?? =0 and ?? =0 in succession in the eqn. (1), we have 
respectively, 
Given, 
?? ?? 1
=-
?? 2
?? ,?? ?? 2
=-
?? 2
?? and ?? ?? 3
=
?? 2
?? (4)
 
?????????? ,                       ???? =4?? ?? 3
 
  ???? =4(-
?? 2
?? )
?                                     
-2
?? 3
(
?? 2
?? 6
+
?? 2
?? 6
+
?? 2
?? 6
)
=4(-
?? 2
?? )
?                                     
?? 2
?? 6
(2?? 2
-?? 2
)+
?? 2
?? 6
(2?? 2
-?? 2
)+
?? 2
?? 6
(2?? 2
-?? 2
)=0
 
? The locus of ?? (?? ,?? ,?? ) is 
 
?? 2
?? 5
(2?? 2
-?? 2
)+
?? 2
?? 6
(2?? 2
-?? 2
)+
?? 2
?? 4
=0. Hence, Proved. 
7.3 Find the equations of the tangent plane to the ellipsoid ?? ?? ?? +?? ?? ?? +?? ?? ?? =???? 
which passes through the line ?? -?? -?? =?? =?? -?? +?? ?? -?? . 
(2020 : 10 Marks) 
Solution: 
Given line                                     ?? -?? -?? =0-?? -?? +2?? -9                                                (??) 
Equation of any plane through given line (i) 
?? -?? -?? +?? (?? -?? +2?? -9)=0 
?                                       ?? (1+?? )+?? (-1-?? )+?? (-1+2?? )=9??                                         (???? ) 
If this plane (ii) touches given ellipsoid then applying 
?? 2
?? +
?? 2
?? +
?? 2
?? =?? 2
(?????? )
 
Given ellipsoid 
2?? 2
+6?? 2
+3?? 2
=27 
?                                                     
2
27
?? 2
+
6
27
?? 2
+
3
27
?? 2
=1         
?                                                          
2
27
?? 2
+
2
9
?? 2
+
1
9
?? 2
=1         
 ?                                                                                        ?? =
2
27
,?? =
2
9
,?? =
1
9
         
 
So from (iii) 
       
27
2
(1+?? )
2
+
9
2
(-1-?? )
2
+9(2?? -1)
2
=(9?? )
2
?     27(1+?? )
2
+9(-1-?? )
2
+18(2?? -1)
2
=162?? 2
?      ?? 2
[27+9+72-162]+2?? [27+9-36]+27+9+18=0
?                                              -54?? 2
+54=0
 
?                                                                   ?? 2
=1 
?                                                                      ?? =±1 
Required equations of tangent planes will be: 
if ?? =1; (ii) =2?? -2?? +?? =9 
if ?? =-1; (ii) =?? =3. 
  
Read More
387 videos|203 docs

Top Courses for UPSC

387 videos|203 docs
Download as PDF
Explore Courses for UPSC exam

Top Courses for UPSC

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

MCQs

,

ppt

,

Summary

,

past year papers

,

Important questions

,

shortcuts and tricks

,

Free

,

pdf

,

Exam

,

Objective type Questions

,

Previous Year Questions with Solutions

,

mock tests for examination

,

study material

,

Ellipsoid and its Properties | Mathematics Optional Notes for UPSC

,

Ellipsoid and its Properties | Mathematics Optional Notes for UPSC

,

Ellipsoid and its Properties | Mathematics Optional Notes for UPSC

,

Viva Questions

,

Sample Paper

,

Extra Questions

,

practice quizzes

,

Semester Notes

,

video lectures

;