UPSC Exam  >  UPSC Notes  >  Mathematics Optional Notes for UPSC  >  Gradient, Divergence and Cur in Cartesian and Cylindrical Coordinate and Directional Derivative

Gradient, Divergence and Cur in Cartesian and Cylindrical Coordinate and Directional Derivative | Mathematics Optional Notes for UPSC PDF Download

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


Edurev123 
3. Gradient, Divergence and Cur in 
Cartesian and Cylindrical Coordinate and 
Directional Derivative 
3.1 Find the directional derivative of : 
(i) ?? ?? ?? ?? -?? ?? ?? ?? ?? ?? ?? at (?? ,-?? ,?? ) along ?? -axis 
(ii) ?? ?? ???? +?? ?? ?? ?? at (?? ,-?? ,?? ) in the direction of ?? ??ˆ-??ˆ-?? ??ˆ
 
(???????? :?? +?? =???? Marks) 
Solution: 
Approach : The directional derivative in any direction is the dot product of the gradient 
with that direction. 
(i) 
?? (?? ,?? ,?? ) =4?? ?? 3
-3?? 2
?? 2
?? 2
??? =
??? ??? ??ˆ+
??? ??? ??ˆ+
??? ??? ??ˆ
      =(4?? 3
-6?? ?? 2
?? 2
)??ˆ-6?? 2
?? ?? 2
??ˆ+(12?? ?? 2
-6?? 2
?? 2
?? )??ˆ
 
Directional derivative along ?? -axis 
=??? ·??ˆ
=12?? ?? 2
-6?? 2
?? 2
?? 
Directional derivative along ?? -axis at (2,-1,2) 
=(??? ·??ˆ
)|
(2,-1,2)
=12·2·2
2
-6·2
2
·(-1)
2
·2=48 
(ii) 
?? (?? ,?? ,?? ) =?? 2
???? +4?? ?? 2
??? =(2?????? +4?? 2
)??ˆ+(?? 2
?? )??ˆ+(?? 2
?? +8???? )??ˆ
??? |
(1,-2,1)
 =??ˆ+6??ˆ
 
? Directional derivative along (2??ˆ-??ˆ-2??ˆ
) 
 =(??ˆ+6??ˆ
)·(
2??ˆ-??ˆ-2??ˆ
3
)
 =(
-1-12
3
)=-13
 
Page 2


Edurev123 
3. Gradient, Divergence and Cur in 
Cartesian and Cylindrical Coordinate and 
Directional Derivative 
3.1 Find the directional derivative of : 
(i) ?? ?? ?? ?? -?? ?? ?? ?? ?? ?? ?? at (?? ,-?? ,?? ) along ?? -axis 
(ii) ?? ?? ???? +?? ?? ?? ?? at (?? ,-?? ,?? ) in the direction of ?? ??ˆ-??ˆ-?? ??ˆ
 
(???????? :?? +?? =???? Marks) 
Solution: 
Approach : The directional derivative in any direction is the dot product of the gradient 
with that direction. 
(i) 
?? (?? ,?? ,?? ) =4?? ?? 3
-3?? 2
?? 2
?? 2
??? =
??? ??? ??ˆ+
??? ??? ??ˆ+
??? ??? ??ˆ
      =(4?? 3
-6?? ?? 2
?? 2
)??ˆ-6?? 2
?? ?? 2
??ˆ+(12?? ?? 2
-6?? 2
?? 2
?? )??ˆ
 
Directional derivative along ?? -axis 
=??? ·??ˆ
=12?? ?? 2
-6?? 2
?? 2
?? 
Directional derivative along ?? -axis at (2,-1,2) 
=(??? ·??ˆ
)|
(2,-1,2)
=12·2·2
2
-6·2
2
·(-1)
2
·2=48 
(ii) 
?? (?? ,?? ,?? ) =?? 2
???? +4?? ?? 2
??? =(2?????? +4?? 2
)??ˆ+(?? 2
?? )??ˆ+(?? 2
?? +8???? )??ˆ
??? |
(1,-2,1)
 =??ˆ+6??ˆ
 
? Directional derivative along (2??ˆ-??ˆ-2??ˆ
) 
 =(??ˆ+6??ˆ
)·(
2??ˆ-??ˆ-2??ˆ
3
)
 =(
-1-12
3
)=-13
 
3.2 Examine whether the vectors ?? ?? ,?? ?? and ?? ?? are copla, 1 ar, where ?? ,?? and ?? 
are the scalar functions defined by: 
and 
?? =?? +?? +?? ?? =?? ?? +?? ?? +?? ?? ?? =???? +???? +????
 
(2011: 15 Marks) 
Solution: 
??? =(
?
??? ?? +
?
??? ?? +
?
??? ??? 
)(?? +?? +?? )
 =?? +?? +??? 
??? =2?? ?? +2?? ?? +2?? ??? 
Similarly ,                                   ??? =(?? +?? )?? +(?? +?? )?? +(?? +?? )??? 
 
Now, ??? ,??? ,??? would be co-planar if their scalar triple product is zero. 
??? ×??? =|
?? ?? ??? 
2?? 2?? 2?? ?? +?? ?? +?? ?? +?? |
=?? (2???? +2?? 2
-2???? -2?? 2
)+?? (2???? +2?? 2
-2?? 2
-2???? )+
??? 
(2?? 2
+2???? -2?? 2
-2???? ).
?                            ??? (??? ×??? )= (?? +?? +??? 
)·[(2???? +2?? 2
-2???? -2?? 2
)?? 
+(2?? ?? +2?? 2
-2?? 2
-2???? )?? +(2?? 2
+2???? -2?? 2
-2???? )??? 
]
=2???? +2?? 2
-2?? 2
-2?? 2
+2???? +2?? 2
-2?? 2
-2???? +2?? 2
+2???? -2?? 2
-2????
=0
 
? The vector ??? ,??? ,? ware co-planar. 
3.3 If ???  be the position vector of a point, find the value(s) of ?? for which the vector 
?? ?? ???  is (i) irrotational, (ii) solenoidal. 
(2011: 15 Marks) 
Solution: 
A vector ??? 
 is said to be solenoidal if divergence of ??? 
=0. 
i.e., 
?·??? 
=0 
Also,                                                              div (?? ??? 
)=(grad ?? )·??? 
+?? div ??? 
 
Page 3


Edurev123 
3. Gradient, Divergence and Cur in 
Cartesian and Cylindrical Coordinate and 
Directional Derivative 
3.1 Find the directional derivative of : 
(i) ?? ?? ?? ?? -?? ?? ?? ?? ?? ?? ?? at (?? ,-?? ,?? ) along ?? -axis 
(ii) ?? ?? ???? +?? ?? ?? ?? at (?? ,-?? ,?? ) in the direction of ?? ??ˆ-??ˆ-?? ??ˆ
 
(???????? :?? +?? =???? Marks) 
Solution: 
Approach : The directional derivative in any direction is the dot product of the gradient 
with that direction. 
(i) 
?? (?? ,?? ,?? ) =4?? ?? 3
-3?? 2
?? 2
?? 2
??? =
??? ??? ??ˆ+
??? ??? ??ˆ+
??? ??? ??ˆ
      =(4?? 3
-6?? ?? 2
?? 2
)??ˆ-6?? 2
?? ?? 2
??ˆ+(12?? ?? 2
-6?? 2
?? 2
?? )??ˆ
 
Directional derivative along ?? -axis 
=??? ·??ˆ
=12?? ?? 2
-6?? 2
?? 2
?? 
Directional derivative along ?? -axis at (2,-1,2) 
=(??? ·??ˆ
)|
(2,-1,2)
=12·2·2
2
-6·2
2
·(-1)
2
·2=48 
(ii) 
?? (?? ,?? ,?? ) =?? 2
???? +4?? ?? 2
??? =(2?????? +4?? 2
)??ˆ+(?? 2
?? )??ˆ+(?? 2
?? +8???? )??ˆ
??? |
(1,-2,1)
 =??ˆ+6??ˆ
 
? Directional derivative along (2??ˆ-??ˆ-2??ˆ
) 
 =(??ˆ+6??ˆ
)·(
2??ˆ-??ˆ-2??ˆ
3
)
 =(
-1-12
3
)=-13
 
3.2 Examine whether the vectors ?? ?? ,?? ?? and ?? ?? are copla, 1 ar, where ?? ,?? and ?? 
are the scalar functions defined by: 
and 
?? =?? +?? +?? ?? =?? ?? +?? ?? +?? ?? ?? =???? +???? +????
 
(2011: 15 Marks) 
Solution: 
??? =(
?
??? ?? +
?
??? ?? +
?
??? ??? 
)(?? +?? +?? )
 =?? +?? +??? 
??? =2?? ?? +2?? ?? +2?? ??? 
Similarly ,                                   ??? =(?? +?? )?? +(?? +?? )?? +(?? +?? )??? 
 
Now, ??? ,??? ,??? would be co-planar if their scalar triple product is zero. 
??? ×??? =|
?? ?? ??? 
2?? 2?? 2?? ?? +?? ?? +?? ?? +?? |
=?? (2???? +2?? 2
-2???? -2?? 2
)+?? (2???? +2?? 2
-2?? 2
-2???? )+
??? 
(2?? 2
+2???? -2?? 2
-2???? ).
?                            ??? (??? ×??? )= (?? +?? +??? 
)·[(2???? +2?? 2
-2???? -2?? 2
)?? 
+(2?? ?? +2?? 2
-2?? 2
-2???? )?? +(2?? 2
+2???? -2?? 2
-2???? )??? 
]
=2???? +2?? 2
-2?? 2
-2?? 2
+2???? +2?? 2
-2?? 2
-2???? +2?? 2
+2???? -2?? 2
-2????
=0
 
? The vector ??? ,??? ,? ware co-planar. 
3.3 If ???  be the position vector of a point, find the value(s) of ?? for which the vector 
?? ?? ???  is (i) irrotational, (ii) solenoidal. 
(2011: 15 Marks) 
Solution: 
A vector ??? 
 is said to be solenoidal if divergence of ??? 
=0. 
i.e., 
?·??? 
=0 
Also,                                                              div (?? ??? 
)=(grad ?? )·??? 
+?? div ??? 
 
??? ?? ??  will be solenoidal if 
div (?? ?? ?? ) =0
?                   (grad ?? ?? )·?? +?? ?? div (?? ) =0
?                 (?? ?? ?? -1
grad ?? )·?? +?? ?? ·3 =0
?                                                          div ??  =(??ˆ
?
??? +??ˆ
?
??? +??ˆ
?
??? )(?? ??ˆ+?? ??ˆ+?? ??ˆ
)
 =1+1+1=3
 
 and                                       grad ?? (4)=?? '
(4) grad ?? ?                   (?? ?? ?? -1
·
?? 
?? )·?? +3?? ?? =0
 ?                         ?? ?? ?? -2
(?? ·?? )+3?? ?? =0
 ?                            ?? ?? ?? -2
·?? 2
+3?? ?? =0
 ?                                          ?? ?? (?? +3)=0??? =-3
 
A vector ??  is said to be irrotational if 
?×??? 
 =0
Also,                                           ?×(?? ??? 
) =(grad ?? )×??? 
+?? (?×??? 
)
 
??? ?? ??  will be irrotational if 
?×(?? ?? ?? ) =0
?                                (grad ?? ?? )×?? +?? ?? (?×?? ) =0
 
?                                      (?? ?? ?? -1
·
?? 
?? )·?? +?? ?? ·0=0   
Hence, ?? ?? ??  is irrotatlonal for all the real values of ?? . 
3.4 A vector field is given by 
???? 
=(?? ?? +?? ?? ?? )?? +(?? ?? +?? ?? ?? )?? 
Verify that the field ???? 
 is irrotational or not. Find the scalar potential. 
(2015 : 12 Marks) 
Solution: 
A vector field ?? 
 is said to be irrotational if curl ?? 
=0, i.e., 
?×?? 
=0
?
?? 
×?? 
=
|
|
??ˆ ??ˆ ??ˆ
?
??? ?
??? ?
??? ?? 2
+?? ?? 2
?? 2
+?? 2
?? 0
|
|
 
Page 4


Edurev123 
3. Gradient, Divergence and Cur in 
Cartesian and Cylindrical Coordinate and 
Directional Derivative 
3.1 Find the directional derivative of : 
(i) ?? ?? ?? ?? -?? ?? ?? ?? ?? ?? ?? at (?? ,-?? ,?? ) along ?? -axis 
(ii) ?? ?? ???? +?? ?? ?? ?? at (?? ,-?? ,?? ) in the direction of ?? ??ˆ-??ˆ-?? ??ˆ
 
(???????? :?? +?? =???? Marks) 
Solution: 
Approach : The directional derivative in any direction is the dot product of the gradient 
with that direction. 
(i) 
?? (?? ,?? ,?? ) =4?? ?? 3
-3?? 2
?? 2
?? 2
??? =
??? ??? ??ˆ+
??? ??? ??ˆ+
??? ??? ??ˆ
      =(4?? 3
-6?? ?? 2
?? 2
)??ˆ-6?? 2
?? ?? 2
??ˆ+(12?? ?? 2
-6?? 2
?? 2
?? )??ˆ
 
Directional derivative along ?? -axis 
=??? ·??ˆ
=12?? ?? 2
-6?? 2
?? 2
?? 
Directional derivative along ?? -axis at (2,-1,2) 
=(??? ·??ˆ
)|
(2,-1,2)
=12·2·2
2
-6·2
2
·(-1)
2
·2=48 
(ii) 
?? (?? ,?? ,?? ) =?? 2
???? +4?? ?? 2
??? =(2?????? +4?? 2
)??ˆ+(?? 2
?? )??ˆ+(?? 2
?? +8???? )??ˆ
??? |
(1,-2,1)
 =??ˆ+6??ˆ
 
? Directional derivative along (2??ˆ-??ˆ-2??ˆ
) 
 =(??ˆ+6??ˆ
)·(
2??ˆ-??ˆ-2??ˆ
3
)
 =(
-1-12
3
)=-13
 
3.2 Examine whether the vectors ?? ?? ,?? ?? and ?? ?? are copla, 1 ar, where ?? ,?? and ?? 
are the scalar functions defined by: 
and 
?? =?? +?? +?? ?? =?? ?? +?? ?? +?? ?? ?? =???? +???? +????
 
(2011: 15 Marks) 
Solution: 
??? =(
?
??? ?? +
?
??? ?? +
?
??? ??? 
)(?? +?? +?? )
 =?? +?? +??? 
??? =2?? ?? +2?? ?? +2?? ??? 
Similarly ,                                   ??? =(?? +?? )?? +(?? +?? )?? +(?? +?? )??? 
 
Now, ??? ,??? ,??? would be co-planar if their scalar triple product is zero. 
??? ×??? =|
?? ?? ??? 
2?? 2?? 2?? ?? +?? ?? +?? ?? +?? |
=?? (2???? +2?? 2
-2???? -2?? 2
)+?? (2???? +2?? 2
-2?? 2
-2???? )+
??? 
(2?? 2
+2???? -2?? 2
-2???? ).
?                            ??? (??? ×??? )= (?? +?? +??? 
)·[(2???? +2?? 2
-2???? -2?? 2
)?? 
+(2?? ?? +2?? 2
-2?? 2
-2???? )?? +(2?? 2
+2???? -2?? 2
-2???? )??? 
]
=2???? +2?? 2
-2?? 2
-2?? 2
+2???? +2?? 2
-2?? 2
-2???? +2?? 2
+2???? -2?? 2
-2????
=0
 
? The vector ??? ,??? ,? ware co-planar. 
3.3 If ???  be the position vector of a point, find the value(s) of ?? for which the vector 
?? ?? ???  is (i) irrotational, (ii) solenoidal. 
(2011: 15 Marks) 
Solution: 
A vector ??? 
 is said to be solenoidal if divergence of ??? 
=0. 
i.e., 
?·??? 
=0 
Also,                                                              div (?? ??? 
)=(grad ?? )·??? 
+?? div ??? 
 
??? ?? ??  will be solenoidal if 
div (?? ?? ?? ) =0
?                   (grad ?? ?? )·?? +?? ?? div (?? ) =0
?                 (?? ?? ?? -1
grad ?? )·?? +?? ?? ·3 =0
?                                                          div ??  =(??ˆ
?
??? +??ˆ
?
??? +??ˆ
?
??? )(?? ??ˆ+?? ??ˆ+?? ??ˆ
)
 =1+1+1=3
 
 and                                       grad ?? (4)=?? '
(4) grad ?? ?                   (?? ?? ?? -1
·
?? 
?? )·?? +3?? ?? =0
 ?                         ?? ?? ?? -2
(?? ·?? )+3?? ?? =0
 ?                            ?? ?? ?? -2
·?? 2
+3?? ?? =0
 ?                                          ?? ?? (?? +3)=0??? =-3
 
A vector ??  is said to be irrotational if 
?×??? 
 =0
Also,                                           ?×(?? ??? 
) =(grad ?? )×??? 
+?? (?×??? 
)
 
??? ?? ??  will be irrotational if 
?×(?? ?? ?? ) =0
?                                (grad ?? ?? )×?? +?? ?? (?×?? ) =0
 
?                                      (?? ?? ?? -1
·
?? 
?? )·?? +?? ?? ·0=0   
Hence, ?? ?? ??  is irrotatlonal for all the real values of ?? . 
3.4 A vector field is given by 
???? 
=(?? ?? +?? ?? ?? )?? +(?? ?? +?? ?? ?? )?? 
Verify that the field ???? 
 is irrotational or not. Find the scalar potential. 
(2015 : 12 Marks) 
Solution: 
A vector field ?? 
 is said to be irrotational if curl ?? 
=0, i.e., 
?×?? 
=0
?
?? 
×?? 
=
|
|
??ˆ ??ˆ ??ˆ
?
??? ?
??? ?
??? ?? 2
+?? ?? 2
?? 2
+?? 2
?? 0
|
|
 
 =??ˆ(0-0)-??ˆ(0-0)+??ˆ
(2???? -2???? )
 =0
? 
 
??? 
 is irrotational. 
Now, it can be written as grad of a scalar field, i.e., to find ?? so that 
  
                                    ??? =?? 
i.e.,                             ??ˆ
??? ??? +??ˆ
??? ??? =(?? 2
+?? ?? 2
)??ˆ+(?? 2
+?? 2
?? )??ˆ
?                                                
??? ??? =?? 2
+?? ?? 2
; 
??? ??? =?? 2
+?? 2
?? 
?                                                    ?? =
?? 3
3
+
?? 2
?? 2
2
+?? (?? )                                                   (*) 
Differentiating w.r.t. ?? and comparing with (*) 
                                                 
??? ??? =?? 2
?? +?? '
(?? )
 ?                                     ?? '
(?? )=?? 2
                                            ?? (?? )=
?? 3
3
+?? ?                                  ?? (?? ,?? )=
?? 3
3
+
?? 3
3
+
?? 2
?? 2
2
+?? 
3.5 For what values of the constants ?? ,?? and ?? the vector 
???? 
=(?? +?? +???? )??ˆ+(???? +?? ?? -?? )??ˆ+(-?? +???? +?? ?? )??ˆ
 
is irrational. Find the divergence in cylindrical coordinates of this vector with 
these values. 
(2017: 10 Marks) 
Solution: 
Irrational ? Curl ???
=0 
Page 5


Edurev123 
3. Gradient, Divergence and Cur in 
Cartesian and Cylindrical Coordinate and 
Directional Derivative 
3.1 Find the directional derivative of : 
(i) ?? ?? ?? ?? -?? ?? ?? ?? ?? ?? ?? at (?? ,-?? ,?? ) along ?? -axis 
(ii) ?? ?? ???? +?? ?? ?? ?? at (?? ,-?? ,?? ) in the direction of ?? ??ˆ-??ˆ-?? ??ˆ
 
(???????? :?? +?? =???? Marks) 
Solution: 
Approach : The directional derivative in any direction is the dot product of the gradient 
with that direction. 
(i) 
?? (?? ,?? ,?? ) =4?? ?? 3
-3?? 2
?? 2
?? 2
??? =
??? ??? ??ˆ+
??? ??? ??ˆ+
??? ??? ??ˆ
      =(4?? 3
-6?? ?? 2
?? 2
)??ˆ-6?? 2
?? ?? 2
??ˆ+(12?? ?? 2
-6?? 2
?? 2
?? )??ˆ
 
Directional derivative along ?? -axis 
=??? ·??ˆ
=12?? ?? 2
-6?? 2
?? 2
?? 
Directional derivative along ?? -axis at (2,-1,2) 
=(??? ·??ˆ
)|
(2,-1,2)
=12·2·2
2
-6·2
2
·(-1)
2
·2=48 
(ii) 
?? (?? ,?? ,?? ) =?? 2
???? +4?? ?? 2
??? =(2?????? +4?? 2
)??ˆ+(?? 2
?? )??ˆ+(?? 2
?? +8???? )??ˆ
??? |
(1,-2,1)
 =??ˆ+6??ˆ
 
? Directional derivative along (2??ˆ-??ˆ-2??ˆ
) 
 =(??ˆ+6??ˆ
)·(
2??ˆ-??ˆ-2??ˆ
3
)
 =(
-1-12
3
)=-13
 
3.2 Examine whether the vectors ?? ?? ,?? ?? and ?? ?? are copla, 1 ar, where ?? ,?? and ?? 
are the scalar functions defined by: 
and 
?? =?? +?? +?? ?? =?? ?? +?? ?? +?? ?? ?? =???? +???? +????
 
(2011: 15 Marks) 
Solution: 
??? =(
?
??? ?? +
?
??? ?? +
?
??? ??? 
)(?? +?? +?? )
 =?? +?? +??? 
??? =2?? ?? +2?? ?? +2?? ??? 
Similarly ,                                   ??? =(?? +?? )?? +(?? +?? )?? +(?? +?? )??? 
 
Now, ??? ,??? ,??? would be co-planar if their scalar triple product is zero. 
??? ×??? =|
?? ?? ??? 
2?? 2?? 2?? ?? +?? ?? +?? ?? +?? |
=?? (2???? +2?? 2
-2???? -2?? 2
)+?? (2???? +2?? 2
-2?? 2
-2???? )+
??? 
(2?? 2
+2???? -2?? 2
-2???? ).
?                            ??? (??? ×??? )= (?? +?? +??? 
)·[(2???? +2?? 2
-2???? -2?? 2
)?? 
+(2?? ?? +2?? 2
-2?? 2
-2???? )?? +(2?? 2
+2???? -2?? 2
-2???? )??? 
]
=2???? +2?? 2
-2?? 2
-2?? 2
+2???? +2?? 2
-2?? 2
-2???? +2?? 2
+2???? -2?? 2
-2????
=0
 
? The vector ??? ,??? ,? ware co-planar. 
3.3 If ???  be the position vector of a point, find the value(s) of ?? for which the vector 
?? ?? ???  is (i) irrotational, (ii) solenoidal. 
(2011: 15 Marks) 
Solution: 
A vector ??? 
 is said to be solenoidal if divergence of ??? 
=0. 
i.e., 
?·??? 
=0 
Also,                                                              div (?? ??? 
)=(grad ?? )·??? 
+?? div ??? 
 
??? ?? ??  will be solenoidal if 
div (?? ?? ?? ) =0
?                   (grad ?? ?? )·?? +?? ?? div (?? ) =0
?                 (?? ?? ?? -1
grad ?? )·?? +?? ?? ·3 =0
?                                                          div ??  =(??ˆ
?
??? +??ˆ
?
??? +??ˆ
?
??? )(?? ??ˆ+?? ??ˆ+?? ??ˆ
)
 =1+1+1=3
 
 and                                       grad ?? (4)=?? '
(4) grad ?? ?                   (?? ?? ?? -1
·
?? 
?? )·?? +3?? ?? =0
 ?                         ?? ?? ?? -2
(?? ·?? )+3?? ?? =0
 ?                            ?? ?? ?? -2
·?? 2
+3?? ?? =0
 ?                                          ?? ?? (?? +3)=0??? =-3
 
A vector ??  is said to be irrotational if 
?×??? 
 =0
Also,                                           ?×(?? ??? 
) =(grad ?? )×??? 
+?? (?×??? 
)
 
??? ?? ??  will be irrotational if 
?×(?? ?? ?? ) =0
?                                (grad ?? ?? )×?? +?? ?? (?×?? ) =0
 
?                                      (?? ?? ?? -1
·
?? 
?? )·?? +?? ?? ·0=0   
Hence, ?? ?? ??  is irrotatlonal for all the real values of ?? . 
3.4 A vector field is given by 
???? 
=(?? ?? +?? ?? ?? )?? +(?? ?? +?? ?? ?? )?? 
Verify that the field ???? 
 is irrotational or not. Find the scalar potential. 
(2015 : 12 Marks) 
Solution: 
A vector field ?? 
 is said to be irrotational if curl ?? 
=0, i.e., 
?×?? 
=0
?
?? 
×?? 
=
|
|
??ˆ ??ˆ ??ˆ
?
??? ?
??? ?
??? ?? 2
+?? ?? 2
?? 2
+?? 2
?? 0
|
|
 
 =??ˆ(0-0)-??ˆ(0-0)+??ˆ
(2???? -2???? )
 =0
? 
 
??? 
 is irrotational. 
Now, it can be written as grad of a scalar field, i.e., to find ?? so that 
  
                                    ??? =?? 
i.e.,                             ??ˆ
??? ??? +??ˆ
??? ??? =(?? 2
+?? ?? 2
)??ˆ+(?? 2
+?? 2
?? )??ˆ
?                                                
??? ??? =?? 2
+?? ?? 2
; 
??? ??? =?? 2
+?? 2
?? 
?                                                    ?? =
?? 3
3
+
?? 2
?? 2
2
+?? (?? )                                                   (*) 
Differentiating w.r.t. ?? and comparing with (*) 
                                                 
??? ??? =?? 2
?? +?? '
(?? )
 ?                                     ?? '
(?? )=?? 2
                                            ?? (?? )=
?? 3
3
+?? ?                                  ?? (?? ,?? )=
?? 3
3
+
?? 3
3
+
?? 2
?? 2
2
+?? 
3.5 For what values of the constants ?? ,?? and ?? the vector 
???? 
=(?? +?? +???? )??ˆ+(???? +?? ?? -?? )??ˆ+(-?? +???? +?? ?? )??ˆ
 
is irrational. Find the divergence in cylindrical coordinates of this vector with 
these values. 
(2017: 10 Marks) 
Solution: 
Irrational ? Curl ???
=0 
                   Curl ?
?? 
=?×??? 
[
 
 
 
?? ?? ?? ?
??? ?
??? ?
??? ?? ?? h]
 
 
 
( if ?? =???? +???? +h?? )
                               =|
|
?? ?? ?? ?
??? ?
??? ?
??? ?? +?? +???? ???? +2?? -?? -?? +???? +2?? |
|
                              =??(?? -(-1)-?? (-1-?? )+?? (?? -1)
                              =(?? +1)?? +(?? +1)?? +(?? -1)??                              =0
 ?                      ?? =-1,?? =1,?? =-1
 ?                     ???
=(?? +?? -?? )?? +(?? +2?? -?? )?? +(-?? -?? +2?? )?? 
We find div ??? 
 and express it in cylindrical coordinates. 
??? 
 =(?? +?? -?? )?? +(?? +2?? -?? )?? +(-?? -?? +2?? )?? div ??? 
 =?·??? 
 =
??? ?? ??? +
??? ?? ??? +
??? ?? ??? =1+2+2=5 (constant) 
 
Hence, divergence in cylindrical co-ordinates =5. 
3.6 Let ???? =?? ?? ??ˆ+?? ?? ??ˆ+?? ?? ??ˆ
. Show that curl (curl ???? )=?? ?????? (?????? ???? )-?? ?? ???? . 
(2018: 12 Marks) 
Solution: 
 Curl ( Curl ?? )=?×(?×?? ) .  
Now, we know that 
?? 
×(??? 
×?? 
)=(?? 
·?? 
)??? 
-(?? 
·??? 
)?? 
 
Given: 
?? 1
??ˆ+?? 2
??ˆ+?? 3
??ˆ
=??  
?×??  =|
|
??ˆ ??ˆ ??ˆ
?
??? ?
??? ?
??? ?? 1
?? 2
?? 3
|
|
 =??ˆ(
??? 3
??? -
??? 2
??? )-??ˆ(
??? 3
??? -
??? 1
??? )+??ˆ
(
??? 2
??? -
??? 1
??? )
 
Read More
387 videos|203 docs
Related Searches

Gradient

,

Viva Questions

,

video lectures

,

pdf

,

Divergence and Cur in Cartesian and Cylindrical Coordinate and Directional Derivative | Mathematics Optional Notes for UPSC

,

study material

,

Important questions

,

Divergence and Cur in Cartesian and Cylindrical Coordinate and Directional Derivative | Mathematics Optional Notes for UPSC

,

Sample Paper

,

ppt

,

Gradient

,

Objective type Questions

,

Previous Year Questions with Solutions

,

Divergence and Cur in Cartesian and Cylindrical Coordinate and Directional Derivative | Mathematics Optional Notes for UPSC

,

Extra Questions

,

Gradient

,

MCQs

,

past year papers

,

shortcuts and tricks

,

practice quizzes

,

Exam

,

Free

,

Summary

,

mock tests for examination

,

Semester Notes

;