UPSC Exam  >  UPSC Notes  >  Mathematics Optional Notes for UPSC  >  Homan's Definition of Definite Integrals

Homan's Definition of Definite Integrals | Mathematics Optional Notes for UPSC PDF Download

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


Edurev123 
3. Homan's Definition of Definite Integrals 
3.1 Show that the function 
?? (?? )=[?? ?? ]+|?? -?? | 
is a Riemann-integrable in the interval [?? ,?? ], where [?? ] denotes the greatest 
integer less than or equal to ?? . Can you give an example of a function that is not 
Riemann integrable on [?? ,?? ] ? Compute ?
?? ?? ??? (?? )???? , where ?? (?? ) is as above. 
(2010: 12 Marks) 
Solution: 
Given: 
?? (?? )=
{
 
 
 
 
1-?? if 0=?? <1
?? if 1=?? <v2
?? +1 v2=?? <v3
?? +2 v3=?? <2
 
Now, ?? (?? ) is discontinuous at x=1,v2,v3, i.e., finite number of discontinuity. 
??? (?? ) is Riemann integrable in [0,2]. 
Now, 
? ?
2
0
??? (?? )???? =? ?
1
0
?(1-?? )???? +? ?
v2
1
??????? +? ?
v3
v2
?(?? +1)???? +? ?
2
v3
?(?? +2)????
 =[?? ]
0
1
-[
?? 2
2
]
0
1
+[
?? 2
2
]
1
v2
+[
?? 2
2
]
v2
v3
+[?? ]
v2
v3
+[
?? 2
2
]
v3
2
+[2?? ]
v3
2
 =1-
1
2
+
2
2
-
1
2
+
3
2
-
2
2
+v3-v2+
4
2
-
3
2
+2(2-v3)
 =6-v2-v3
 
3.2 Evaluate: ?
?? ?? ????? ?????? 
(2011: 12 Marks) 
Solution: 
Page 2


Edurev123 
3. Homan's Definition of Definite Integrals 
3.1 Show that the function 
?? (?? )=[?? ?? ]+|?? -?? | 
is a Riemann-integrable in the interval [?? ,?? ], where [?? ] denotes the greatest 
integer less than or equal to ?? . Can you give an example of a function that is not 
Riemann integrable on [?? ,?? ] ? Compute ?
?? ?? ??? (?? )???? , where ?? (?? ) is as above. 
(2010: 12 Marks) 
Solution: 
Given: 
?? (?? )=
{
 
 
 
 
1-?? if 0=?? <1
?? if 1=?? <v2
?? +1 v2=?? <v3
?? +2 v3=?? <2
 
Now, ?? (?? ) is discontinuous at x=1,v2,v3, i.e., finite number of discontinuity. 
??? (?? ) is Riemann integrable in [0,2]. 
Now, 
? ?
2
0
??? (?? )???? =? ?
1
0
?(1-?? )???? +? ?
v2
1
??????? +? ?
v3
v2
?(?? +1)???? +? ?
2
v3
?(?? +2)????
 =[?? ]
0
1
-[
?? 2
2
]
0
1
+[
?? 2
2
]
1
v2
+[
?? 2
2
]
v2
v3
+[?? ]
v2
v3
+[
?? 2
2
]
v3
2
+[2?? ]
v3
2
 =1-
1
2
+
2
2
-
1
2
+
3
2
-
2
2
+v3-v2+
4
2
-
3
2
+2(2-v3)
 =6-v2-v3
 
3.2 Evaluate: ?
?? ?? ????? ?????? 
(2011: 12 Marks) 
Solution: 
 We know that                            ? ???????? =?? ? ?????? -? (
????
????
·? ???? ?? )????
 ?                                              ? ln (?? )???? =ln ?? ? 1???? -? ((
?? ????
ln (?? ))? ?????? )????
                                                                           =ln ?? ·?? -? 
1
?? ·??????                                                                           =?? -ln ?? -? 1????
                                                                           =?? in ?? -?? +?? , where ?? is the constant of integration 
 
3.3 Evaluate: ?
?? ?? ?(?? ?? ?????? 
?? ?? -?????? 
?? ?? )???? 
(2013 : 10 Marks) 
Solution: 
Given integral ?
0
1
?(2?? sin 
1
?? -cos 
1
?? )???? 
Let 
1
?? =?? ??? =
1
?? ????? =-
1
?? 2
???? 
when ?? =0,?? =8;?? =1,?? =1. 
 ?                                           ?? =? ?
1
8
?(
2
?? sin ?? -cos ?? )(-
1
?? 2
???? )
 =? ?
1
8
?(
2
?? 3
sin ?? -
1
???
2
cos ?? )????
 
Using integration by parts on 2nd term 
 =? ?
8
1
?
2
?? 3
sin ?? -{[
1
?? 2
sin ?? ]
1
8
-? ?
8
1
?-
2
?? 3
sin ?? }
 =-[
1
?? 2
sin ?? ]
1
8
=sin 1
 
3.4 Evaluate: ?
?? ?? ?
???? ?? ?? (?? +?? )
?? +?? ?? ???? 
(2014: 10 marks) 
Solution: 
Let 
Page 3


Edurev123 
3. Homan's Definition of Definite Integrals 
3.1 Show that the function 
?? (?? )=[?? ?? ]+|?? -?? | 
is a Riemann-integrable in the interval [?? ,?? ], where [?? ] denotes the greatest 
integer less than or equal to ?? . Can you give an example of a function that is not 
Riemann integrable on [?? ,?? ] ? Compute ?
?? ?? ??? (?? )???? , where ?? (?? ) is as above. 
(2010: 12 Marks) 
Solution: 
Given: 
?? (?? )=
{
 
 
 
 
1-?? if 0=?? <1
?? if 1=?? <v2
?? +1 v2=?? <v3
?? +2 v3=?? <2
 
Now, ?? (?? ) is discontinuous at x=1,v2,v3, i.e., finite number of discontinuity. 
??? (?? ) is Riemann integrable in [0,2]. 
Now, 
? ?
2
0
??? (?? )???? =? ?
1
0
?(1-?? )???? +? ?
v2
1
??????? +? ?
v3
v2
?(?? +1)???? +? ?
2
v3
?(?? +2)????
 =[?? ]
0
1
-[
?? 2
2
]
0
1
+[
?? 2
2
]
1
v2
+[
?? 2
2
]
v2
v3
+[?? ]
v2
v3
+[
?? 2
2
]
v3
2
+[2?? ]
v3
2
 =1-
1
2
+
2
2
-
1
2
+
3
2
-
2
2
+v3-v2+
4
2
-
3
2
+2(2-v3)
 =6-v2-v3
 
3.2 Evaluate: ?
?? ?? ????? ?????? 
(2011: 12 Marks) 
Solution: 
 We know that                            ? ???????? =?? ? ?????? -? (
????
????
·? ???? ?? )????
 ?                                              ? ln (?? )???? =ln ?? ? 1???? -? ((
?? ????
ln (?? ))? ?????? )????
                                                                           =ln ?? ·?? -? 
1
?? ·??????                                                                           =?? -ln ?? -? 1????
                                                                           =?? in ?? -?? +?? , where ?? is the constant of integration 
 
3.3 Evaluate: ?
?? ?? ?(?? ?? ?????? 
?? ?? -?????? 
?? ?? )???? 
(2013 : 10 Marks) 
Solution: 
Given integral ?
0
1
?(2?? sin 
1
?? -cos 
1
?? )???? 
Let 
1
?? =?? ??? =
1
?? ????? =-
1
?? 2
???? 
when ?? =0,?? =8;?? =1,?? =1. 
 ?                                           ?? =? ?
1
8
?(
2
?? sin ?? -cos ?? )(-
1
?? 2
???? )
 =? ?
1
8
?(
2
?? 3
sin ?? -
1
???
2
cos ?? )????
 
Using integration by parts on 2nd term 
 =? ?
8
1
?
2
?? 3
sin ?? -{[
1
?? 2
sin ?? ]
1
8
-? ?
8
1
?-
2
?? 3
sin ?? }
 =-[
1
?? 2
sin ?? ]
1
8
=sin 1
 
3.4 Evaluate: ?
?? ?? ?
???? ?? ?? (?? +?? )
?? +?? ?? ???? 
(2014: 10 marks) 
Solution: 
Let 
?? =? ?
1
0
log (1+?? )
1+?? 2
???? 
Put ?? =tan ?? ?                              ???? =sec
2
 ?????? 
when ?? =0,?? =0 and when ?? =1,?? =
?? ?? 1
 
                  ?? =? ?
?? /4
0
?
log (1+tan ?? )
1+tan
2
 ?? ·sec
2
 ??????                    =? ?
?? /4
0
?log(1+tan?? )????                                                                           …(??)
                     =? ?
?? /4
0
?log [1+tan (
?? 4
-?? )]( by the property ? ?
?? 0
??? '
?? )???? =? ?
?? 0
??? (?? -?? ))
                     =? ?
?? /4
0
?log (1+
1-tan ?? 1+tan ?? )????
                     =? ?
?? /4
0
?log (
2
1+tan ?? )????
                     =? ?
?? /4
0
?{log 2-log (1+tan ?? }????
                     =log 2? ?
?? /4
0
????? -? ?
?? /4
0
?log (1+tan ?? )????
                       ?? =log 2·[?? ]
0
?? 4
-??                                                                        ???????? (??)       
 ?              2?? =
?? 4
log 2
 ?                 ?? =
?? 8
log 2
 ?              ? ?
?? /4
0
?
log (1+?? )
1+?? 2
???? =
?? 8
log 2
 
3.5 Evaluate the following integral: ?
?? /?? ?? /?? ?
v?????? ?? ?? v?????? ?? ?? +v?????? ?? ?? ???? 
(2015: 10 Marks) 
Solution: 
Page 4


Edurev123 
3. Homan's Definition of Definite Integrals 
3.1 Show that the function 
?? (?? )=[?? ?? ]+|?? -?? | 
is a Riemann-integrable in the interval [?? ,?? ], where [?? ] denotes the greatest 
integer less than or equal to ?? . Can you give an example of a function that is not 
Riemann integrable on [?? ,?? ] ? Compute ?
?? ?? ??? (?? )???? , where ?? (?? ) is as above. 
(2010: 12 Marks) 
Solution: 
Given: 
?? (?? )=
{
 
 
 
 
1-?? if 0=?? <1
?? if 1=?? <v2
?? +1 v2=?? <v3
?? +2 v3=?? <2
 
Now, ?? (?? ) is discontinuous at x=1,v2,v3, i.e., finite number of discontinuity. 
??? (?? ) is Riemann integrable in [0,2]. 
Now, 
? ?
2
0
??? (?? )???? =? ?
1
0
?(1-?? )???? +? ?
v2
1
??????? +? ?
v3
v2
?(?? +1)???? +? ?
2
v3
?(?? +2)????
 =[?? ]
0
1
-[
?? 2
2
]
0
1
+[
?? 2
2
]
1
v2
+[
?? 2
2
]
v2
v3
+[?? ]
v2
v3
+[
?? 2
2
]
v3
2
+[2?? ]
v3
2
 =1-
1
2
+
2
2
-
1
2
+
3
2
-
2
2
+v3-v2+
4
2
-
3
2
+2(2-v3)
 =6-v2-v3
 
3.2 Evaluate: ?
?? ?? ????? ?????? 
(2011: 12 Marks) 
Solution: 
 We know that                            ? ???????? =?? ? ?????? -? (
????
????
·? ???? ?? )????
 ?                                              ? ln (?? )???? =ln ?? ? 1???? -? ((
?? ????
ln (?? ))? ?????? )????
                                                                           =ln ?? ·?? -? 
1
?? ·??????                                                                           =?? -ln ?? -? 1????
                                                                           =?? in ?? -?? +?? , where ?? is the constant of integration 
 
3.3 Evaluate: ?
?? ?? ?(?? ?? ?????? 
?? ?? -?????? 
?? ?? )???? 
(2013 : 10 Marks) 
Solution: 
Given integral ?
0
1
?(2?? sin 
1
?? -cos 
1
?? )???? 
Let 
1
?? =?? ??? =
1
?? ????? =-
1
?? 2
???? 
when ?? =0,?? =8;?? =1,?? =1. 
 ?                                           ?? =? ?
1
8
?(
2
?? sin ?? -cos ?? )(-
1
?? 2
???? )
 =? ?
1
8
?(
2
?? 3
sin ?? -
1
???
2
cos ?? )????
 
Using integration by parts on 2nd term 
 =? ?
8
1
?
2
?? 3
sin ?? -{[
1
?? 2
sin ?? ]
1
8
-? ?
8
1
?-
2
?? 3
sin ?? }
 =-[
1
?? 2
sin ?? ]
1
8
=sin 1
 
3.4 Evaluate: ?
?? ?? ?
???? ?? ?? (?? +?? )
?? +?? ?? ???? 
(2014: 10 marks) 
Solution: 
Let 
?? =? ?
1
0
log (1+?? )
1+?? 2
???? 
Put ?? =tan ?? ?                              ???? =sec
2
 ?????? 
when ?? =0,?? =0 and when ?? =1,?? =
?? ?? 1
 
                  ?? =? ?
?? /4
0
?
log (1+tan ?? )
1+tan
2
 ?? ·sec
2
 ??????                    =? ?
?? /4
0
?log(1+tan?? )????                                                                           …(??)
                     =? ?
?? /4
0
?log [1+tan (
?? 4
-?? )]( by the property ? ?
?? 0
??? '
?? )???? =? ?
?? 0
??? (?? -?? ))
                     =? ?
?? /4
0
?log (1+
1-tan ?? 1+tan ?? )????
                     =? ?
?? /4
0
?log (
2
1+tan ?? )????
                     =? ?
?? /4
0
?{log 2-log (1+tan ?? }????
                     =log 2? ?
?? /4
0
????? -? ?
?? /4
0
?log (1+tan ?? )????
                       ?? =log 2·[?? ]
0
?? 4
-??                                                                        ???????? (??)       
 ?              2?? =
?? 4
log 2
 ?                 ?? =
?? 8
log 2
 ?              ? ?
?? /4
0
?
log (1+?? )
1+?? 2
???? =
?? 8
log 2
 
3.5 Evaluate the following integral: ?
?? /?? ?? /?? ?
v?????? ?? ?? v?????? ?? ?? +v?????? ?? ?? ???? 
(2015: 10 Marks) 
Solution: 
?? =? ?
?? /3
?? /6
?
(sin ?? )
1/3
(sin ?? )
1/3
+(cos ?? )
1/3
?? ?? (??)
                                    =? ?
?? /3
?? /6
?
[sin (
?? 6
+
?? 3
-?? )]
1/3
????
sin (
?? 6
+
?? 3
-?? )]
1/3
+[cos (
?? 6
+
?? 3
-?? )]
1/3
?? =? ?
?? /3
?? /6
?
(cos ?? )
1/3
(cos ?? )
1/3
+(sin ?? )
1/3
???? (???? )
           =[? ?
?? ?? ??? (?? )???? =? ?
?? ?? ??? (?? +?? -?? )???? ]
 
Adding (i) and (ii) 
                                             2?? =? ?
?? /3
?? /6
?
(sin ?? )
1/3
+(cos)
1/3
(sin ?? )
1/3
+(cos ?? )
1/3
???? =? ?
?? /3
?? /6
????? =[?? ]
?? /6
?? /3
=[
?? 3
-
?? 6
]
 ?                                          ?? =
1
2
×
?? 6
=
?? 12
 
3.6 Evaluate: ?? =?
?? ?? ??? v?? ?????? (
?? ?? )???? . 
(2016 : 10 Marks) 
Solution: 
Improper integral as integrand becomes undefined at lower limit, i.e., ?? =0. 
Let log
1
?? =?? ?                                      ?? =?? -?? ????? =-?? -?? ???? 
???????????? ,                                                         ?? =0
+
??? ?8 
                                                                      x=1??? =0 
                                                                      ?? =-? ?
0
8
?(?? -?? ?? )
1/3
·?? -?? ???? =? ?
8
0
??? 1/3
·?? -
4
3
?? ???? 
Putting 
4
3
?? =?? ?                                ???? =
3
4
???? 
                                                                       ?? =? ?
8
0
?(
3
4
?? )
1/3
?? -?? ·
3
4
???? =
3
4
·(
3
4
)
1/3
? ?
8
0
??? 1/3
·?? -?? ???? 
 
Page 5


Edurev123 
3. Homan's Definition of Definite Integrals 
3.1 Show that the function 
?? (?? )=[?? ?? ]+|?? -?? | 
is a Riemann-integrable in the interval [?? ,?? ], where [?? ] denotes the greatest 
integer less than or equal to ?? . Can you give an example of a function that is not 
Riemann integrable on [?? ,?? ] ? Compute ?
?? ?? ??? (?? )???? , where ?? (?? ) is as above. 
(2010: 12 Marks) 
Solution: 
Given: 
?? (?? )=
{
 
 
 
 
1-?? if 0=?? <1
?? if 1=?? <v2
?? +1 v2=?? <v3
?? +2 v3=?? <2
 
Now, ?? (?? ) is discontinuous at x=1,v2,v3, i.e., finite number of discontinuity. 
??? (?? ) is Riemann integrable in [0,2]. 
Now, 
? ?
2
0
??? (?? )???? =? ?
1
0
?(1-?? )???? +? ?
v2
1
??????? +? ?
v3
v2
?(?? +1)???? +? ?
2
v3
?(?? +2)????
 =[?? ]
0
1
-[
?? 2
2
]
0
1
+[
?? 2
2
]
1
v2
+[
?? 2
2
]
v2
v3
+[?? ]
v2
v3
+[
?? 2
2
]
v3
2
+[2?? ]
v3
2
 =1-
1
2
+
2
2
-
1
2
+
3
2
-
2
2
+v3-v2+
4
2
-
3
2
+2(2-v3)
 =6-v2-v3
 
3.2 Evaluate: ?
?? ?? ????? ?????? 
(2011: 12 Marks) 
Solution: 
 We know that                            ? ???????? =?? ? ?????? -? (
????
????
·? ???? ?? )????
 ?                                              ? ln (?? )???? =ln ?? ? 1???? -? ((
?? ????
ln (?? ))? ?????? )????
                                                                           =ln ?? ·?? -? 
1
?? ·??????                                                                           =?? -ln ?? -? 1????
                                                                           =?? in ?? -?? +?? , where ?? is the constant of integration 
 
3.3 Evaluate: ?
?? ?? ?(?? ?? ?????? 
?? ?? -?????? 
?? ?? )???? 
(2013 : 10 Marks) 
Solution: 
Given integral ?
0
1
?(2?? sin 
1
?? -cos 
1
?? )???? 
Let 
1
?? =?? ??? =
1
?? ????? =-
1
?? 2
???? 
when ?? =0,?? =8;?? =1,?? =1. 
 ?                                           ?? =? ?
1
8
?(
2
?? sin ?? -cos ?? )(-
1
?? 2
???? )
 =? ?
1
8
?(
2
?? 3
sin ?? -
1
???
2
cos ?? )????
 
Using integration by parts on 2nd term 
 =? ?
8
1
?
2
?? 3
sin ?? -{[
1
?? 2
sin ?? ]
1
8
-? ?
8
1
?-
2
?? 3
sin ?? }
 =-[
1
?? 2
sin ?? ]
1
8
=sin 1
 
3.4 Evaluate: ?
?? ?? ?
???? ?? ?? (?? +?? )
?? +?? ?? ???? 
(2014: 10 marks) 
Solution: 
Let 
?? =? ?
1
0
log (1+?? )
1+?? 2
???? 
Put ?? =tan ?? ?                              ???? =sec
2
 ?????? 
when ?? =0,?? =0 and when ?? =1,?? =
?? ?? 1
 
                  ?? =? ?
?? /4
0
?
log (1+tan ?? )
1+tan
2
 ?? ·sec
2
 ??????                    =? ?
?? /4
0
?log(1+tan?? )????                                                                           …(??)
                     =? ?
?? /4
0
?log [1+tan (
?? 4
-?? )]( by the property ? ?
?? 0
??? '
?? )???? =? ?
?? 0
??? (?? -?? ))
                     =? ?
?? /4
0
?log (1+
1-tan ?? 1+tan ?? )????
                     =? ?
?? /4
0
?log (
2
1+tan ?? )????
                     =? ?
?? /4
0
?{log 2-log (1+tan ?? }????
                     =log 2? ?
?? /4
0
????? -? ?
?? /4
0
?log (1+tan ?? )????
                       ?? =log 2·[?? ]
0
?? 4
-??                                                                        ???????? (??)       
 ?              2?? =
?? 4
log 2
 ?                 ?? =
?? 8
log 2
 ?              ? ?
?? /4
0
?
log (1+?? )
1+?? 2
???? =
?? 8
log 2
 
3.5 Evaluate the following integral: ?
?? /?? ?? /?? ?
v?????? ?? ?? v?????? ?? ?? +v?????? ?? ?? ???? 
(2015: 10 Marks) 
Solution: 
?? =? ?
?? /3
?? /6
?
(sin ?? )
1/3
(sin ?? )
1/3
+(cos ?? )
1/3
?? ?? (??)
                                    =? ?
?? /3
?? /6
?
[sin (
?? 6
+
?? 3
-?? )]
1/3
????
sin (
?? 6
+
?? 3
-?? )]
1/3
+[cos (
?? 6
+
?? 3
-?? )]
1/3
?? =? ?
?? /3
?? /6
?
(cos ?? )
1/3
(cos ?? )
1/3
+(sin ?? )
1/3
???? (???? )
           =[? ?
?? ?? ??? (?? )???? =? ?
?? ?? ??? (?? +?? -?? )???? ]
 
Adding (i) and (ii) 
                                             2?? =? ?
?? /3
?? /6
?
(sin ?? )
1/3
+(cos)
1/3
(sin ?? )
1/3
+(cos ?? )
1/3
???? =? ?
?? /3
?? /6
????? =[?? ]
?? /6
?? /3
=[
?? 3
-
?? 6
]
 ?                                          ?? =
1
2
×
?? 6
=
?? 12
 
3.6 Evaluate: ?? =?
?? ?? ??? v?? ?????? (
?? ?? )???? . 
(2016 : 10 Marks) 
Solution: 
Improper integral as integrand becomes undefined at lower limit, i.e., ?? =0. 
Let log
1
?? =?? ?                                      ?? =?? -?? ????? =-?? -?? ???? 
???????????? ,                                                         ?? =0
+
??? ?8 
                                                                      x=1??? =0 
                                                                      ?? =-? ?
0
8
?(?? -?? ?? )
1/3
·?? -?? ???? =? ?
8
0
??? 1/3
·?? -
4
3
?? ???? 
Putting 
4
3
?? =?? ?                                ???? =
3
4
???? 
                                                                       ?? =? ?
8
0
?(
3
4
?? )
1/3
?? -?? ·
3
4
???? =
3
4
·(
3
4
)
1/3
? ?
8
0
??? 1/3
·?? -?? ???? 
 
                                                               =(
3
4
)
4/3
·? ?
8
0
??? 4
3
-1
·?? -?? ???? =(
3
4
)
4
3
·
v
(
4
3
)
                                                               =(
3
4
)
4
3
·
v
(1+
1
3
)=
1
3
(
3
4
)
4
3
·[
1
3
                                                                                          [G(?? )=? ?
8
0
??? -?? ·?? ?? -1
???? ;G(??? +1)=?? G(?? )]
 
3.7 Evaluate: ?
?? ?? ??????? -?? (?? -
?? ?? )???? 
(2020: 15 marks) 
Solution: 
Let 
                                                       
?? =? ?
1
0
?tan
-1
 (1-
1
?? )
      =? ?
1
0
?tan
-1
(
?? -1
?? )                                                                  …(??)
?? =? ?
1
0
?tan
-1
(
1-?? -1
1-?? )????           (? ?
?? ?? ??? (?? )???? =? ?
?? ?? ??? (?? +?? -?? )???? )
  =? ?
1
0
?tan
-1
 (
-?? 1-?? )????
 
                                                      =? ?
1
0
?tan
-1
(
?? 1-?? )????                                                              …(???? )  
Adding (i) and (ii), we get 
2?? =? ?
1
0
?tan
-1
 (
?? -1
?? )???? +? ?
1
0
?tan
-1
 (
?? ?? -1
)????
                                             =? ?
1
0
?[tan
-1
 (
?? -1
?? )+tan
-1
 (
?? ?? -1
)]????                                                    ..(?????? )
                                                              (?tan
-1
 ?? +tan
-1
 
1
?? =(
?? 2
 if ?? >0
-
?? 2
 if ?? <0
)
 
Given ?? ?(0,1) 
Read More
387 videos|203 docs
Related Searches

ppt

,

Objective type Questions

,

Free

,

Homan's Definition of Definite Integrals | Mathematics Optional Notes for UPSC

,

video lectures

,

pdf

,

MCQs

,

Viva Questions

,

Homan's Definition of Definite Integrals | Mathematics Optional Notes for UPSC

,

shortcuts and tricks

,

Summary

,

mock tests for examination

,

Sample Paper

,

Extra Questions

,

practice quizzes

,

past year papers

,

Homan's Definition of Definite Integrals | Mathematics Optional Notes for UPSC

,

Exam

,

study material

,

Previous Year Questions with Solutions

,

Important questions

,

Semester Notes

;