UPSC Exam  >  UPSC Notes  >  Mathematics Optional Notes for UPSC  >  Infinite and Improper Integrals

Infinite and Improper Integrals | Mathematics Optional Notes for UPSC PDF Download

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


Edurev123 
5. Infinite and Improper Integrals 
5.1 Examine if the improper integral ?
?? ?? ?
?? ?????? (?? -?? ?? )
?? /?? exists. 
Solution: 
(2017 : 10 Marks) 
Given integrand, 
2?? (1-?? 2
)
2/3
 is undefined at ?? =1. 
Hence, we split the limit at ?? =1. 
? ?
3
0
?
2?? (1-?? 2
)
2/3
???? =? ?
1
0
?
2?? (1-?? 2
)
2/3
???? +? ?
3
1
?
2?? (1-?? 2
)
2/3
????
 = lim
?? ?1
0
?? ?
?? 0
?
2?? (1-?? 2
)
2/3
???? + lim
?? ???
?? ?
?[
2?? (1-?? 2
)
2/3
????
 = lim
?? ?1
-
?[-3(-1-?? 2
)
1/3
]
0
?? + lim
?? ?1
+
?[-3(1-?? 2
)
1/3
]
?? 3
 =[0-(-3)]+[-3(-2)-0]
 =3+6=9
 
5.2 Find the maximum and minimum values of ?? ?? -?? ?? ?? +?? on the interval [?? ,?? ]. 
(2018 : 13 marks) 
Solution: 
   
??????                           ?? (?? ) =?? 4
-5?? 2
+4 (given) 
 Now,                      ?? (?? ) =4?? 3
-10?? +4
?? '
(?? )=0 at ?? 1
=1.32,?? 2
=-1.75,0.43
 Also,                               ?? '
(?? )=12?? 2
-10
 
In the interval [2, 3], ?? (?? ) is monotonous increasing function as ?? '
(?? )>0 for ?? >1.32. 
Therefore, in the interval [2,3], minimum value occurs at ?? =2 and maximum value 
occurs at ?? =3. 
?? (2)=0= minimum value 
?? (3)=40= maximum value 
 
Thus, ?? (?? ) has minimum value of 0 and maximum value of 40 in the interval [2,3]. 
Edurev123 
Page 2


Edurev123 
5. Infinite and Improper Integrals 
5.1 Examine if the improper integral ?
?? ?? ?
?? ?????? (?? -?? ?? )
?? /?? exists. 
Solution: 
(2017 : 10 Marks) 
Given integrand, 
2?? (1-?? 2
)
2/3
 is undefined at ?? =1. 
Hence, we split the limit at ?? =1. 
? ?
3
0
?
2?? (1-?? 2
)
2/3
???? =? ?
1
0
?
2?? (1-?? 2
)
2/3
???? +? ?
3
1
?
2?? (1-?? 2
)
2/3
????
 = lim
?? ?1
0
?? ?
?? 0
?
2?? (1-?? 2
)
2/3
???? + lim
?? ???
?? ?
?[
2?? (1-?? 2
)
2/3
????
 = lim
?? ?1
-
?[-3(-1-?? 2
)
1/3
]
0
?? + lim
?? ?1
+
?[-3(1-?? 2
)
1/3
]
?? 3
 =[0-(-3)]+[-3(-2)-0]
 =3+6=9
 
5.2 Find the maximum and minimum values of ?? ?? -?? ?? ?? +?? on the interval [?? ,?? ]. 
(2018 : 13 marks) 
Solution: 
   
??????                           ?? (?? ) =?? 4
-5?? 2
+4 (given) 
 Now,                      ?? (?? ) =4?? 3
-10?? +4
?? '
(?? )=0 at ?? 1
=1.32,?? 2
=-1.75,0.43
 Also,                               ?? '
(?? )=12?? 2
-10
 
In the interval [2, 3], ?? (?? ) is monotonous increasing function as ?? '
(?? )>0 for ?? >1.32. 
Therefore, in the interval [2,3], minimum value occurs at ?? =2 and maximum value 
occurs at ?? =3. 
?? (2)=0= minimum value 
?? (3)=40= maximum value 
 
Thus, ?? (?? ) has minimum value of 0 and maximum value of 40 in the interval [2,3]. 
Edurev123 
6. Double and Triple Integrals 
6.1 Let ?? be the region determined by the inequalities ?? >?? ,?? >?? ,?? <?? and ?? >
?? ?? +?? ?? . Compute ?
?? ??? ?????????????? 
Solution: 
(2010 : 20 Marks) 
The given region is ?? ,?? >0 and ?? <8. 
       ?? >?? 2
+?? 2
 
? Integral,                                                            I=??
?? ?2?? ????????????  
?                                                          ?? =? ?
8
?? =?? 2
+?? 2
?? ?
8
2
?2?????????????? 
                                                                  =? ?
?
?
?[?? ]
?? 2
+?? 2
8
·2?????????? =? (8-?? 2
-?? 2
)·2?????????? 
           =2? (8?? -?? 3
-?? 2
?? )???????? 
 
Let ?? =?? cos ?? ,?? =?? sin ?? 
?? varies from 0 to 
?? 2
 as ?? ,?? >0 in given region. 
Page 3


Edurev123 
5. Infinite and Improper Integrals 
5.1 Examine if the improper integral ?
?? ?? ?
?? ?????? (?? -?? ?? )
?? /?? exists. 
Solution: 
(2017 : 10 Marks) 
Given integrand, 
2?? (1-?? 2
)
2/3
 is undefined at ?? =1. 
Hence, we split the limit at ?? =1. 
? ?
3
0
?
2?? (1-?? 2
)
2/3
???? =? ?
1
0
?
2?? (1-?? 2
)
2/3
???? +? ?
3
1
?
2?? (1-?? 2
)
2/3
????
 = lim
?? ?1
0
?? ?
?? 0
?
2?? (1-?? 2
)
2/3
???? + lim
?? ???
?? ?
?[
2?? (1-?? 2
)
2/3
????
 = lim
?? ?1
-
?[-3(-1-?? 2
)
1/3
]
0
?? + lim
?? ?1
+
?[-3(1-?? 2
)
1/3
]
?? 3
 =[0-(-3)]+[-3(-2)-0]
 =3+6=9
 
5.2 Find the maximum and minimum values of ?? ?? -?? ?? ?? +?? on the interval [?? ,?? ]. 
(2018 : 13 marks) 
Solution: 
   
??????                           ?? (?? ) =?? 4
-5?? 2
+4 (given) 
 Now,                      ?? (?? ) =4?? 3
-10?? +4
?? '
(?? )=0 at ?? 1
=1.32,?? 2
=-1.75,0.43
 Also,                               ?? '
(?? )=12?? 2
-10
 
In the interval [2, 3], ?? (?? ) is monotonous increasing function as ?? '
(?? )>0 for ?? >1.32. 
Therefore, in the interval [2,3], minimum value occurs at ?? =2 and maximum value 
occurs at ?? =3. 
?? (2)=0= minimum value 
?? (3)=40= maximum value 
 
Thus, ?? (?? ) has minimum value of 0 and maximum value of 40 in the interval [2,3]. 
Edurev123 
6. Double and Triple Integrals 
6.1 Let ?? be the region determined by the inequalities ?? >?? ,?? >?? ,?? <?? and ?? >
?? ?? +?? ?? . Compute ?
?? ??? ?????????????? 
Solution: 
(2010 : 20 Marks) 
The given region is ?? ,?? >0 and ?? <8. 
       ?? >?? 2
+?? 2
 
? Integral,                                                            I=??
?? ?2?? ????????????  
?                                                          ?? =? ?
8
?? =?? 2
+?? 2
?? ?
8
2
?2?????????????? 
                                                                  =? ?
?
?
?[?? ]
?? 2
+?? 2
8
·2?????????? =? (8-?? 2
-?? 2
)·2?????????? 
           =2? (8?? -?? 3
-?? 2
?? )???????? 
 
Let ?? =?? cos ?? ,?? =?? sin ?? 
?? varies from 0 to 
?? 2
 as ?? ,?? >0 in given region. 
Also, ?? varies from 0 to 2v2 as ?? 2
+?? 2
<?? . 
?? =2? (8·?? cos ?? -?? 3
cos
3
 ?? -?? 3
sin
2
 ?? ·cos ?? )?????????? =2? {8?? cos ?? -?? 3
cos ?? (cos
2
 ?? +sin
2
 ?? )}?????????? }
 =2? ?
?? /2
?? =0
?? ?
2v2
?? =0
?(8?? 2
cos ?? -?? 4
cos ?? )???????? =2[8[
?? 3
3
]
0
2v2
[sin ?? ]
0
?? /2
-[
?? 5
5
]
0
2v2
[sin ?? ]
0
?? /2
]
 =2[8×
16v2
3
×1-
128v2
5
×1]=
512v2
15
 
6.2 Evaluate ?
?? ????????? where ?? is the region bounded by the line ?? =?? -?? and the 
parabola ?? ?? =?? ?? +?? . 
(2013 : 15 Marks) 
Solution: 
The required areas is shown shaded in the diagram. 
 
The points of intersection of the curves are 
(?? -1)
2
=2?? +6??? 2
-4?? -5=0 
?? =5,-1 
i.e., (-1,-2) and (5,4) 
Page 4


Edurev123 
5. Infinite and Improper Integrals 
5.1 Examine if the improper integral ?
?? ?? ?
?? ?????? (?? -?? ?? )
?? /?? exists. 
Solution: 
(2017 : 10 Marks) 
Given integrand, 
2?? (1-?? 2
)
2/3
 is undefined at ?? =1. 
Hence, we split the limit at ?? =1. 
? ?
3
0
?
2?? (1-?? 2
)
2/3
???? =? ?
1
0
?
2?? (1-?? 2
)
2/3
???? +? ?
3
1
?
2?? (1-?? 2
)
2/3
????
 = lim
?? ?1
0
?? ?
?? 0
?
2?? (1-?? 2
)
2/3
???? + lim
?? ???
?? ?
?[
2?? (1-?? 2
)
2/3
????
 = lim
?? ?1
-
?[-3(-1-?? 2
)
1/3
]
0
?? + lim
?? ?1
+
?[-3(1-?? 2
)
1/3
]
?? 3
 =[0-(-3)]+[-3(-2)-0]
 =3+6=9
 
5.2 Find the maximum and minimum values of ?? ?? -?? ?? ?? +?? on the interval [?? ,?? ]. 
(2018 : 13 marks) 
Solution: 
   
??????                           ?? (?? ) =?? 4
-5?? 2
+4 (given) 
 Now,                      ?? (?? ) =4?? 3
-10?? +4
?? '
(?? )=0 at ?? 1
=1.32,?? 2
=-1.75,0.43
 Also,                               ?? '
(?? )=12?? 2
-10
 
In the interval [2, 3], ?? (?? ) is monotonous increasing function as ?? '
(?? )>0 for ?? >1.32. 
Therefore, in the interval [2,3], minimum value occurs at ?? =2 and maximum value 
occurs at ?? =3. 
?? (2)=0= minimum value 
?? (3)=40= maximum value 
 
Thus, ?? (?? ) has minimum value of 0 and maximum value of 40 in the interval [2,3]. 
Edurev123 
6. Double and Triple Integrals 
6.1 Let ?? be the region determined by the inequalities ?? >?? ,?? >?? ,?? <?? and ?? >
?? ?? +?? ?? . Compute ?
?? ??? ?????????????? 
Solution: 
(2010 : 20 Marks) 
The given region is ?? ,?? >0 and ?? <8. 
       ?? >?? 2
+?? 2
 
? Integral,                                                            I=??
?? ?2?? ????????????  
?                                                          ?? =? ?
8
?? =?? 2
+?? 2
?? ?
8
2
?2?????????????? 
                                                                  =? ?
?
?
?[?? ]
?? 2
+?? 2
8
·2?????????? =? (8-?? 2
-?? 2
)·2?????????? 
           =2? (8?? -?? 3
-?? 2
?? )???????? 
 
Let ?? =?? cos ?? ,?? =?? sin ?? 
?? varies from 0 to 
?? 2
 as ?? ,?? >0 in given region. 
Also, ?? varies from 0 to 2v2 as ?? 2
+?? 2
<?? . 
?? =2? (8·?? cos ?? -?? 3
cos
3
 ?? -?? 3
sin
2
 ?? ·cos ?? )?????????? =2? {8?? cos ?? -?? 3
cos ?? (cos
2
 ?? +sin
2
 ?? )}?????????? }
 =2? ?
?? /2
?? =0
?? ?
2v2
?? =0
?(8?? 2
cos ?? -?? 4
cos ?? )???????? =2[8[
?? 3
3
]
0
2v2
[sin ?? ]
0
?? /2
-[
?? 5
5
]
0
2v2
[sin ?? ]
0
?? /2
]
 =2[8×
16v2
3
×1-
128v2
5
×1]=
512v2
15
 
6.2 Evaluate ?
?? ????????? where ?? is the region bounded by the line ?? =?? -?? and the 
parabola ?? ?? =?? ?? +?? . 
(2013 : 15 Marks) 
Solution: 
The required areas is shown shaded in the diagram. 
 
The points of intersection of the curves are 
(?? -1)
2
=2?? +6??? 2
-4?? -5=0 
?? =5,-1 
i.e., (-1,-2) and (5,4) 
?? =??
?? ????????? =? ?
?? 1
????????? +? ?
?? 2
????????? =? ?
-1
?? =-3
?? ?
v2?? +6
-v2?? +6
????????????? +? ?
?? =5
?? =-1
?? ?
v2?? +6
?? =?? -1
????????????? =? ?
-1
?? =-3
?[
?? ?? 2
2
]
?? =-v2?? +6
v2?? +6
???? +? ?
5
?? =-1
??? [
?? 2
2
]
?? -1
v2?? +6
????
 =? ?
-1
?? =-3
?
?? 2
[(2?? +6)-(2?? +6)]???? +? ?
5
?? =-1
?
?? 2
[(2?? +6)-(?? -1)
2
]????
 
 =0+? ?
5
?? =-1
?
?? 2
(4?? +5-?? 2
)?? '
?? =? ?
5
?? =-1
?(2?? 2
+
5
2
?? -
?? 3
2
)????
 =[
2?? 3
3
+
5
4
?? 2
-
?? 4
8
]
?? =-1
5
=36
 
6.3 By using the transformation ?? +?? =?? ,?? =???? , evaluate the integral ?{???? (?? -
?? -?? )}
?? /?? ???????? taken over the area enciosed by the straight lines ?? =?? ,?? =?? and 
?? +?? =?? . 
(2014 : 15 Marks) 
Solution: 
        ?????????? :                  ?? +?? =?? ,?? =????
     ?                                ?? =?? -????
?? =?? (1-?? )
          ??????                     
?(?? ,?? )
?(?? ,?? )
 =|
??? ??? ??? ??? ??? ??? ??? ??? |+|
-?? -?? ?? ?? |
 =?? -???? +????
 =?? 
??????                                                                          ???????? =
?(?? ,?? )
?(?? ,?? )
???????? ???????? =?????????? 
                                                  vxy(1-?? -?? )=v?? (1-?? )???? (1-?? )=?? ?? 1/2
v(1-?? )(1-?? ) 
Clearly, the region of integration is OAB. 
The integration formulae are ?? +?? :=?? ,?? =???? =(?? +?? )?? 
?                                                                                      ?? =
?? 1-?? ?? 
Page 5


Edurev123 
5. Infinite and Improper Integrals 
5.1 Examine if the improper integral ?
?? ?? ?
?? ?????? (?? -?? ?? )
?? /?? exists. 
Solution: 
(2017 : 10 Marks) 
Given integrand, 
2?? (1-?? 2
)
2/3
 is undefined at ?? =1. 
Hence, we split the limit at ?? =1. 
? ?
3
0
?
2?? (1-?? 2
)
2/3
???? =? ?
1
0
?
2?? (1-?? 2
)
2/3
???? +? ?
3
1
?
2?? (1-?? 2
)
2/3
????
 = lim
?? ?1
0
?? ?
?? 0
?
2?? (1-?? 2
)
2/3
???? + lim
?? ???
?? ?
?[
2?? (1-?? 2
)
2/3
????
 = lim
?? ?1
-
?[-3(-1-?? 2
)
1/3
]
0
?? + lim
?? ?1
+
?[-3(1-?? 2
)
1/3
]
?? 3
 =[0-(-3)]+[-3(-2)-0]
 =3+6=9
 
5.2 Find the maximum and minimum values of ?? ?? -?? ?? ?? +?? on the interval [?? ,?? ]. 
(2018 : 13 marks) 
Solution: 
   
??????                           ?? (?? ) =?? 4
-5?? 2
+4 (given) 
 Now,                      ?? (?? ) =4?? 3
-10?? +4
?? '
(?? )=0 at ?? 1
=1.32,?? 2
=-1.75,0.43
 Also,                               ?? '
(?? )=12?? 2
-10
 
In the interval [2, 3], ?? (?? ) is monotonous increasing function as ?? '
(?? )>0 for ?? >1.32. 
Therefore, in the interval [2,3], minimum value occurs at ?? =2 and maximum value 
occurs at ?? =3. 
?? (2)=0= minimum value 
?? (3)=40= maximum value 
 
Thus, ?? (?? ) has minimum value of 0 and maximum value of 40 in the interval [2,3]. 
Edurev123 
6. Double and Triple Integrals 
6.1 Let ?? be the region determined by the inequalities ?? >?? ,?? >?? ,?? <?? and ?? >
?? ?? +?? ?? . Compute ?
?? ??? ?????????????? 
Solution: 
(2010 : 20 Marks) 
The given region is ?? ,?? >0 and ?? <8. 
       ?? >?? 2
+?? 2
 
? Integral,                                                            I=??
?? ?2?? ????????????  
?                                                          ?? =? ?
8
?? =?? 2
+?? 2
?? ?
8
2
?2?????????????? 
                                                                  =? ?
?
?
?[?? ]
?? 2
+?? 2
8
·2?????????? =? (8-?? 2
-?? 2
)·2?????????? 
           =2? (8?? -?? 3
-?? 2
?? )???????? 
 
Let ?? =?? cos ?? ,?? =?? sin ?? 
?? varies from 0 to 
?? 2
 as ?? ,?? >0 in given region. 
Also, ?? varies from 0 to 2v2 as ?? 2
+?? 2
<?? . 
?? =2? (8·?? cos ?? -?? 3
cos
3
 ?? -?? 3
sin
2
 ?? ·cos ?? )?????????? =2? {8?? cos ?? -?? 3
cos ?? (cos
2
 ?? +sin
2
 ?? )}?????????? }
 =2? ?
?? /2
?? =0
?? ?
2v2
?? =0
?(8?? 2
cos ?? -?? 4
cos ?? )???????? =2[8[
?? 3
3
]
0
2v2
[sin ?? ]
0
?? /2
-[
?? 5
5
]
0
2v2
[sin ?? ]
0
?? /2
]
 =2[8×
16v2
3
×1-
128v2
5
×1]=
512v2
15
 
6.2 Evaluate ?
?? ????????? where ?? is the region bounded by the line ?? =?? -?? and the 
parabola ?? ?? =?? ?? +?? . 
(2013 : 15 Marks) 
Solution: 
The required areas is shown shaded in the diagram. 
 
The points of intersection of the curves are 
(?? -1)
2
=2?? +6??? 2
-4?? -5=0 
?? =5,-1 
i.e., (-1,-2) and (5,4) 
?? =??
?? ????????? =? ?
?? 1
????????? +? ?
?? 2
????????? =? ?
-1
?? =-3
?? ?
v2?? +6
-v2?? +6
????????????? +? ?
?? =5
?? =-1
?? ?
v2?? +6
?? =?? -1
????????????? =? ?
-1
?? =-3
?[
?? ?? 2
2
]
?? =-v2?? +6
v2?? +6
???? +? ?
5
?? =-1
??? [
?? 2
2
]
?? -1
v2?? +6
????
 =? ?
-1
?? =-3
?
?? 2
[(2?? +6)-(2?? +6)]???? +? ?
5
?? =-1
?
?? 2
[(2?? +6)-(?? -1)
2
]????
 
 =0+? ?
5
?? =-1
?
?? 2
(4?? +5-?? 2
)?? '
?? =? ?
5
?? =-1
?(2?? 2
+
5
2
?? -
?? 3
2
)????
 =[
2?? 3
3
+
5
4
?? 2
-
?? 4
8
]
?? =-1
5
=36
 
6.3 By using the transformation ?? +?? =?? ,?? =???? , evaluate the integral ?{???? (?? -
?? -?? )}
?? /?? ???????? taken over the area enciosed by the straight lines ?? =?? ,?? =?? and 
?? +?? =?? . 
(2014 : 15 Marks) 
Solution: 
        ?????????? :                  ?? +?? =?? ,?? =????
     ?                                ?? =?? -????
?? =?? (1-?? )
          ??????                     
?(?? ,?? )
?(?? ,?? )
 =|
??? ??? ??? ??? ??? ??? ??? ??? |+|
-?? -?? ?? ?? |
 =?? -???? +????
 =?? 
??????                                                                          ???????? =
?(?? ,?? )
?(?? ,?? )
???????? ???????? =?????????? 
                                                  vxy(1-?? -?? )=v?? (1-?? )???? (1-?? )=?? ?? 1/2
v(1-?? )(1-?? ) 
Clearly, the region of integration is OAB. 
The integration formulae are ?? +?? :=?? ,?? =???? =(?? +?? )?? 
?                                                                                      ?? =
?? 1-?? ?? 
i.e., clearly the area for new variable is to be divided by the lines parallel to ?? +?? =1 
and by lines ?? =
?? ?? -?? ?? : 
i.e., 
?? =?? tan ?? 
where 
tan ?? =
?? 1-?? 
where ?? varies from 0 to 
?? 2
 and so ?? varies from 0 to 1 and ?? +?? +?? varies from 0 to 1 
 
i.e., limits of ?? are 0 to 1 . 
Hence, the given integral 
=? ?
1
0
? ?
1
0
?? ?? 1/2
v(1-?? )(1-?? )?????????? 
Read More
387 videos|203 docs
Related Searches

Objective type Questions

,

ppt

,

practice quizzes

,

study material

,

Infinite and Improper Integrals | Mathematics Optional Notes for UPSC

,

shortcuts and tricks

,

Summary

,

past year papers

,

pdf

,

video lectures

,

Infinite and Improper Integrals | Mathematics Optional Notes for UPSC

,

Sample Paper

,

Semester Notes

,

mock tests for examination

,

Exam

,

Extra Questions

,

Important questions

,

MCQs

,

Previous Year Questions with Solutions

,

Free

,

Infinite and Improper Integrals | Mathematics Optional Notes for UPSC

,

Viva Questions

;