UPSC Exam  >  UPSC Notes  >  Mathematics Optional Notes for UPSC  >  Laplace and inverse Laplace Transformation and Properties

Laplace and inverse Laplace Transformation and Properties | Mathematics Optional Notes for UPSC PDF Download

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


Edurev123 
8. Laplace and inverse Laplace 
Transformation and Properties 
8.1 Find the inverse Laplace transform of ?? (?? )=???? (
?? +?? ?? +?? ) . 
(2009: 20 Marks) 
Solution: 
Approach: Use the differentiation property of inverse Laplace transform. 
Given: 
?? (?? )=ln (
?? +1
?? +?? ) 
By differentiation property we have 
?? -1
[?? (?? )] =
1
?? ?? -1
[?? -1
(?? )]
? ?? -1
[ln (
?? +1
?? +?? )] =
1
?? ?? -1
[
?? ????
ln (
?? +1
?? +?? )]
 =
1
?? ?? -1
[
?? ????
ln (?? +1)-ln (?? +?? )]
 =
1
?? ?? -1
[
1
?? +1
-
1
?? +?? ]
 =
1
?? {?? -1
(
1
?? +1
)-?? -1
(
1
?? +?? )} (Linearity) 
 =
1
?? {?? -?? -?? -5?? }.
 
8.2 Use Laplace transform method to solve the following initial value problem: 
?? ?? ?? ?? ?? ?? -?? ????
????
+?? =?? ?? ,?? (?? )=?? and 
????
????
|
?? =?? =-?? 
(2011: 15 Marks) 
Solution: 
The given initial value problem is 
Page 2


Edurev123 
8. Laplace and inverse Laplace 
Transformation and Properties 
8.1 Find the inverse Laplace transform of ?? (?? )=???? (
?? +?? ?? +?? ) . 
(2009: 20 Marks) 
Solution: 
Approach: Use the differentiation property of inverse Laplace transform. 
Given: 
?? (?? )=ln (
?? +1
?? +?? ) 
By differentiation property we have 
?? -1
[?? (?? )] =
1
?? ?? -1
[?? -1
(?? )]
? ?? -1
[ln (
?? +1
?? +?? )] =
1
?? ?? -1
[
?? ????
ln (
?? +1
?? +?? )]
 =
1
?? ?? -1
[
?? ????
ln (?? +1)-ln (?? +?? )]
 =
1
?? ?? -1
[
1
?? +1
-
1
?? +?? ]
 =
1
?? {?? -1
(
1
?? +1
)-?? -1
(
1
?? +?? )} (Linearity) 
 =
1
?? {?? -?? -?? -5?? }.
 
8.2 Use Laplace transform method to solve the following initial value problem: 
?? ?? ?? ?? ?? ?? -?? ????
????
+?? =?? ?? ,?? (?? )=?? and 
????
????
|
?? =?? =-?? 
(2011: 15 Marks) 
Solution: 
The given initial value problem is 
?? 2
?? ?? ?? 2
-2
????
????
+?? =?? ?? ,?? (0)=2 (??)
(
????
????
)
?? =0
 =-1
 
Taking Laplace transform of both sides of (i), we get 
?? (
?? 2
?? ?? ?? 2
-2
????
????
+?? )=?? [?? '
] 
?                                  ?? {?? ''
(?? )}-2?? {?? '
(?? )}+?? {?? (?? )}=?? {?? ?? } 
?     ?? 2
?? {?? (?? )}-???? (0)-?? '
(0)-2[???? {?? (?? )}-?? (0)]+?? {?? (?? )}=
1
?? 
?             ?? (?? )][?? 2
-2?? +1]-?? (2)-(-1)+2(2)=
1
?? 
?                                                             ?? {?? (?? )}(?? -1)
2
=
1
?? +2?? -5 
                                              =
1+2?? 2
-5?? ?? 
?                                                                          ?? {?? (?? )} =
1+2?? 2
-5?? ?? (?? -1)
2
 
                                                             =
1
?? -1
-
2
(?? -1)
2
+
1
?? … (ii) (By using Partial Fractions)  
Taking inverse Laplace of (ii), we get 
?? (?? )=?? -1
{
1
?? -1
-
2
(?? -1)
2
+
1
?? }
 ? ?? (?? )=?? ?? -2?? ?? ?? +1
 
8.3 Using Laplace transforms, solve the initial value problem 
?? ''
+?? ?? +?? =?? -?? ,?? (?? )=-?? ,?? (?? )=?? 
(2012: 12 Marks) 
Solution: 
Given : 
?? '
+2?? +?? =?? -?? (??)
?? (0) =-1,?? '
(0)=1
 
Page 3


Edurev123 
8. Laplace and inverse Laplace 
Transformation and Properties 
8.1 Find the inverse Laplace transform of ?? (?? )=???? (
?? +?? ?? +?? ) . 
(2009: 20 Marks) 
Solution: 
Approach: Use the differentiation property of inverse Laplace transform. 
Given: 
?? (?? )=ln (
?? +1
?? +?? ) 
By differentiation property we have 
?? -1
[?? (?? )] =
1
?? ?? -1
[?? -1
(?? )]
? ?? -1
[ln (
?? +1
?? +?? )] =
1
?? ?? -1
[
?? ????
ln (
?? +1
?? +?? )]
 =
1
?? ?? -1
[
?? ????
ln (?? +1)-ln (?? +?? )]
 =
1
?? ?? -1
[
1
?? +1
-
1
?? +?? ]
 =
1
?? {?? -1
(
1
?? +1
)-?? -1
(
1
?? +?? )} (Linearity) 
 =
1
?? {?? -?? -?? -5?? }.
 
8.2 Use Laplace transform method to solve the following initial value problem: 
?? ?? ?? ?? ?? ?? -?? ????
????
+?? =?? ?? ,?? (?? )=?? and 
????
????
|
?? =?? =-?? 
(2011: 15 Marks) 
Solution: 
The given initial value problem is 
?? 2
?? ?? ?? 2
-2
????
????
+?? =?? ?? ,?? (0)=2 (??)
(
????
????
)
?? =0
 =-1
 
Taking Laplace transform of both sides of (i), we get 
?? (
?? 2
?? ?? ?? 2
-2
????
????
+?? )=?? [?? '
] 
?                                  ?? {?? ''
(?? )}-2?? {?? '
(?? )}+?? {?? (?? )}=?? {?? ?? } 
?     ?? 2
?? {?? (?? )}-???? (0)-?? '
(0)-2[???? {?? (?? )}-?? (0)]+?? {?? (?? )}=
1
?? 
?             ?? (?? )][?? 2
-2?? +1]-?? (2)-(-1)+2(2)=
1
?? 
?                                                             ?? {?? (?? )}(?? -1)
2
=
1
?? +2?? -5 
                                              =
1+2?? 2
-5?? ?? 
?                                                                          ?? {?? (?? )} =
1+2?? 2
-5?? ?? (?? -1)
2
 
                                                             =
1
?? -1
-
2
(?? -1)
2
+
1
?? … (ii) (By using Partial Fractions)  
Taking inverse Laplace of (ii), we get 
?? (?? )=?? -1
{
1
?? -1
-
2
(?? -1)
2
+
1
?? }
 ? ?? (?? )=?? ?? -2?? ?? ?? +1
 
8.3 Using Laplace transforms, solve the initial value problem 
?? ''
+?? ?? +?? =?? -?? ,?? (?? )=-?? ,?? (?? )=?? 
(2012: 12 Marks) 
Solution: 
Given : 
?? '
+2?? +?? =?? -?? (??)
?? (0) =-1,?? '
(0)=1
 
Taking Laplace transform of both sides of (i), 
?? (?? '
(?? ))+2?? (?? (?? ))+?? (?? )=?? (?? -?? ) 
??? 2
?? (?? )-???? (0)-?? (0)+2(???? (?? )-?? (0))+?? (?? )=
1
?? +1
 
??? (?? )(?? 2
+2?? +1)-?? (-1)-1-2(-1)=
1
?? +1
 
? ?? (?? )(?? +1)
2
+(?? +1)=
1
?? +1
 
? ?? (?? )=
1
(?? +1)
3
-
1
(?? +1)
(???? ) 
Taking inverse Laplace transform on both sides of (ii), we have 
?? =?? -1
[
1
(?? +1)
3
-
1
(?? +1)
]
? ?? =?? -?? ·
?? 2
2
-?? -?? 
8.4 By using Laplace transform method solve the differential equation : 
(?? ?? +?? ?? )?? =?? ?????? (???? +?? ) , ?? ?? =
?? ?? ?? ?? ?? subject to the initial conditions ?? =?? and 
????
????
=?? 
at ?? =?? in which ?? ,?? and ?? are constants. 
(2013 : 15 Marks) 
Solution: 
(?? 2
+?? 2
)?? =?? sin (???? +?? ) 
Taking Laplace transform on both sides 
?? (
?? 2
?? ?? ?? 2
)+?? 2
?? (?? )=???? [sin ???? cos ?? +cos ???? sin ?? ] 
?    ?? 2
?? (?? )-???? (0)-?? '
(0)+?? 2
?? (?? )=?? [
?? ?? 2
+?? 2
cos ?? +
?? ?? 2
+?? 2
sin ?? ] 
?                                                            ?? (?? )=?? [
?? (?? 2
+?? 2
)
2
cos ?? +
?? (?? 2
+?? 2
)
2
sin ?? ] 
?                                                                   ?? =?? {?? -1
[
?? (?? 2
+?? 2
)
2
]cos ?? +?? -1
[
?? (?? 2
+?? 2
)
2
]sin ?? } 
Page 4


Edurev123 
8. Laplace and inverse Laplace 
Transformation and Properties 
8.1 Find the inverse Laplace transform of ?? (?? )=???? (
?? +?? ?? +?? ) . 
(2009: 20 Marks) 
Solution: 
Approach: Use the differentiation property of inverse Laplace transform. 
Given: 
?? (?? )=ln (
?? +1
?? +?? ) 
By differentiation property we have 
?? -1
[?? (?? )] =
1
?? ?? -1
[?? -1
(?? )]
? ?? -1
[ln (
?? +1
?? +?? )] =
1
?? ?? -1
[
?? ????
ln (
?? +1
?? +?? )]
 =
1
?? ?? -1
[
?? ????
ln (?? +1)-ln (?? +?? )]
 =
1
?? ?? -1
[
1
?? +1
-
1
?? +?? ]
 =
1
?? {?? -1
(
1
?? +1
)-?? -1
(
1
?? +?? )} (Linearity) 
 =
1
?? {?? -?? -?? -5?? }.
 
8.2 Use Laplace transform method to solve the following initial value problem: 
?? ?? ?? ?? ?? ?? -?? ????
????
+?? =?? ?? ,?? (?? )=?? and 
????
????
|
?? =?? =-?? 
(2011: 15 Marks) 
Solution: 
The given initial value problem is 
?? 2
?? ?? ?? 2
-2
????
????
+?? =?? ?? ,?? (0)=2 (??)
(
????
????
)
?? =0
 =-1
 
Taking Laplace transform of both sides of (i), we get 
?? (
?? 2
?? ?? ?? 2
-2
????
????
+?? )=?? [?? '
] 
?                                  ?? {?? ''
(?? )}-2?? {?? '
(?? )}+?? {?? (?? )}=?? {?? ?? } 
?     ?? 2
?? {?? (?? )}-???? (0)-?? '
(0)-2[???? {?? (?? )}-?? (0)]+?? {?? (?? )}=
1
?? 
?             ?? (?? )][?? 2
-2?? +1]-?? (2)-(-1)+2(2)=
1
?? 
?                                                             ?? {?? (?? )}(?? -1)
2
=
1
?? +2?? -5 
                                              =
1+2?? 2
-5?? ?? 
?                                                                          ?? {?? (?? )} =
1+2?? 2
-5?? ?? (?? -1)
2
 
                                                             =
1
?? -1
-
2
(?? -1)
2
+
1
?? … (ii) (By using Partial Fractions)  
Taking inverse Laplace of (ii), we get 
?? (?? )=?? -1
{
1
?? -1
-
2
(?? -1)
2
+
1
?? }
 ? ?? (?? )=?? ?? -2?? ?? ?? +1
 
8.3 Using Laplace transforms, solve the initial value problem 
?? ''
+?? ?? +?? =?? -?? ,?? (?? )=-?? ,?? (?? )=?? 
(2012: 12 Marks) 
Solution: 
Given : 
?? '
+2?? +?? =?? -?? (??)
?? (0) =-1,?? '
(0)=1
 
Taking Laplace transform of both sides of (i), 
?? (?? '
(?? ))+2?? (?? (?? ))+?? (?? )=?? (?? -?? ) 
??? 2
?? (?? )-???? (0)-?? (0)+2(???? (?? )-?? (0))+?? (?? )=
1
?? +1
 
??? (?? )(?? 2
+2?? +1)-?? (-1)-1-2(-1)=
1
?? +1
 
? ?? (?? )(?? +1)
2
+(?? +1)=
1
?? +1
 
? ?? (?? )=
1
(?? +1)
3
-
1
(?? +1)
(???? ) 
Taking inverse Laplace transform on both sides of (ii), we have 
?? =?? -1
[
1
(?? +1)
3
-
1
(?? +1)
]
? ?? =?? -?? ·
?? 2
2
-?? -?? 
8.4 By using Laplace transform method solve the differential equation : 
(?? ?? +?? ?? )?? =?? ?????? (???? +?? ) , ?? ?? =
?? ?? ?? ?? ?? subject to the initial conditions ?? =?? and 
????
????
=?? 
at ?? =?? in which ?? ,?? and ?? are constants. 
(2013 : 15 Marks) 
Solution: 
(?? 2
+?? 2
)?? =?? sin (???? +?? ) 
Taking Laplace transform on both sides 
?? (
?? 2
?? ?? ?? 2
)+?? 2
?? (?? )=???? [sin ???? cos ?? +cos ???? sin ?? ] 
?    ?? 2
?? (?? )-???? (0)-?? '
(0)+?? 2
?? (?? )=?? [
?? ?? 2
+?? 2
cos ?? +
?? ?? 2
+?? 2
sin ?? ] 
?                                                            ?? (?? )=?? [
?? (?? 2
+?? 2
)
2
cos ?? +
?? (?? 2
+?? 2
)
2
sin ?? ] 
?                                                                   ?? =?? {?? -1
[
?? (?? 2
+?? 2
)
2
]cos ?? +?? -1
[
?? (?? 2
+?? 2
)
2
]sin ?? } 
 Now                                 
?? ????
1
(?? 2
+?? 2
)
=-
2?? (?? 2
+?? 2
)
2
 ?                              ?? -1
(
2?? (?? 2
+?? 2
)
2
)=(-1)?? ?? -1
(
1
?? 2
+?? 2
)
                                                                     =
-?? ?? ·sin ????
 ?                             ?? -1
(
?? (?? 2
+?? 2
)
2
)=
?? 2?? sin ????
 
Let 
?? (?? ) =
1
?? 2
+?? 2
;?? (?? )=
1
?? 2
+?? 2
?? (?? ) =?? -1
(?? (?? ))=
1
?? sin ????
?? (?? ) =?? -1
(?? (?? ))=
1
?? sin ????
?? -1
(?? (?? )?? (?? )) =?? *?? =??
?? 0
??? (?? )?? (?? -?? )????
 =
1
?? 2
??
?? 0
?sin ???? sin ?? (?? -?? )????
 
 =
1
2?? 2
??
?? 0
?(cos ?? (?? -2?? )-cos ???? )????
 =
1
2?? 2
[
sin ?? (?? -2?? )
-2?? -?? cos ???? ]
0
?? =
1
2?? 2
[
-sin ????
-2?? +
sin ????
2?? -?? cos ???? ]=
1
2?? 2
[
sin ????
?? -?? cos ???? ]
?? =?? {
1
2?? [
sin ????
?? -?? cos ???? ]cos ?? +(
?? 2?? sin ???? sin ?? )}
 =?? {
1
2?? 2
sin ???? cos ?? -
?? 2?? cos (???? +?? )}
 =
?? 2?? 2
{sin ???? cos ?? -???? cos (???? +?? )}
 
8.5 Solve the initial value problem 
?? ?? ?? ?? ?? ?? +?? =?? ?? -?? ?? ?????? ?? ,?? (?? )=?? ,?? (?? )=?? 
by using Laplace-transform. 
(2014 : 20 Marks) 
Solution: 
Given equation is 
Page 5


Edurev123 
8. Laplace and inverse Laplace 
Transformation and Properties 
8.1 Find the inverse Laplace transform of ?? (?? )=???? (
?? +?? ?? +?? ) . 
(2009: 20 Marks) 
Solution: 
Approach: Use the differentiation property of inverse Laplace transform. 
Given: 
?? (?? )=ln (
?? +1
?? +?? ) 
By differentiation property we have 
?? -1
[?? (?? )] =
1
?? ?? -1
[?? -1
(?? )]
? ?? -1
[ln (
?? +1
?? +?? )] =
1
?? ?? -1
[
?? ????
ln (
?? +1
?? +?? )]
 =
1
?? ?? -1
[
?? ????
ln (?? +1)-ln (?? +?? )]
 =
1
?? ?? -1
[
1
?? +1
-
1
?? +?? ]
 =
1
?? {?? -1
(
1
?? +1
)-?? -1
(
1
?? +?? )} (Linearity) 
 =
1
?? {?? -?? -?? -5?? }.
 
8.2 Use Laplace transform method to solve the following initial value problem: 
?? ?? ?? ?? ?? ?? -?? ????
????
+?? =?? ?? ,?? (?? )=?? and 
????
????
|
?? =?? =-?? 
(2011: 15 Marks) 
Solution: 
The given initial value problem is 
?? 2
?? ?? ?? 2
-2
????
????
+?? =?? ?? ,?? (0)=2 (??)
(
????
????
)
?? =0
 =-1
 
Taking Laplace transform of both sides of (i), we get 
?? (
?? 2
?? ?? ?? 2
-2
????
????
+?? )=?? [?? '
] 
?                                  ?? {?? ''
(?? )}-2?? {?? '
(?? )}+?? {?? (?? )}=?? {?? ?? } 
?     ?? 2
?? {?? (?? )}-???? (0)-?? '
(0)-2[???? {?? (?? )}-?? (0)]+?? {?? (?? )}=
1
?? 
?             ?? (?? )][?? 2
-2?? +1]-?? (2)-(-1)+2(2)=
1
?? 
?                                                             ?? {?? (?? )}(?? -1)
2
=
1
?? +2?? -5 
                                              =
1+2?? 2
-5?? ?? 
?                                                                          ?? {?? (?? )} =
1+2?? 2
-5?? ?? (?? -1)
2
 
                                                             =
1
?? -1
-
2
(?? -1)
2
+
1
?? … (ii) (By using Partial Fractions)  
Taking inverse Laplace of (ii), we get 
?? (?? )=?? -1
{
1
?? -1
-
2
(?? -1)
2
+
1
?? }
 ? ?? (?? )=?? ?? -2?? ?? ?? +1
 
8.3 Using Laplace transforms, solve the initial value problem 
?? ''
+?? ?? +?? =?? -?? ,?? (?? )=-?? ,?? (?? )=?? 
(2012: 12 Marks) 
Solution: 
Given : 
?? '
+2?? +?? =?? -?? (??)
?? (0) =-1,?? '
(0)=1
 
Taking Laplace transform of both sides of (i), 
?? (?? '
(?? ))+2?? (?? (?? ))+?? (?? )=?? (?? -?? ) 
??? 2
?? (?? )-???? (0)-?? (0)+2(???? (?? )-?? (0))+?? (?? )=
1
?? +1
 
??? (?? )(?? 2
+2?? +1)-?? (-1)-1-2(-1)=
1
?? +1
 
? ?? (?? )(?? +1)
2
+(?? +1)=
1
?? +1
 
? ?? (?? )=
1
(?? +1)
3
-
1
(?? +1)
(???? ) 
Taking inverse Laplace transform on both sides of (ii), we have 
?? =?? -1
[
1
(?? +1)
3
-
1
(?? +1)
]
? ?? =?? -?? ·
?? 2
2
-?? -?? 
8.4 By using Laplace transform method solve the differential equation : 
(?? ?? +?? ?? )?? =?? ?????? (???? +?? ) , ?? ?? =
?? ?? ?? ?? ?? subject to the initial conditions ?? =?? and 
????
????
=?? 
at ?? =?? in which ?? ,?? and ?? are constants. 
(2013 : 15 Marks) 
Solution: 
(?? 2
+?? 2
)?? =?? sin (???? +?? ) 
Taking Laplace transform on both sides 
?? (
?? 2
?? ?? ?? 2
)+?? 2
?? (?? )=???? [sin ???? cos ?? +cos ???? sin ?? ] 
?    ?? 2
?? (?? )-???? (0)-?? '
(0)+?? 2
?? (?? )=?? [
?? ?? 2
+?? 2
cos ?? +
?? ?? 2
+?? 2
sin ?? ] 
?                                                            ?? (?? )=?? [
?? (?? 2
+?? 2
)
2
cos ?? +
?? (?? 2
+?? 2
)
2
sin ?? ] 
?                                                                   ?? =?? {?? -1
[
?? (?? 2
+?? 2
)
2
]cos ?? +?? -1
[
?? (?? 2
+?? 2
)
2
]sin ?? } 
 Now                                 
?? ????
1
(?? 2
+?? 2
)
=-
2?? (?? 2
+?? 2
)
2
 ?                              ?? -1
(
2?? (?? 2
+?? 2
)
2
)=(-1)?? ?? -1
(
1
?? 2
+?? 2
)
                                                                     =
-?? ?? ·sin ????
 ?                             ?? -1
(
?? (?? 2
+?? 2
)
2
)=
?? 2?? sin ????
 
Let 
?? (?? ) =
1
?? 2
+?? 2
;?? (?? )=
1
?? 2
+?? 2
?? (?? ) =?? -1
(?? (?? ))=
1
?? sin ????
?? (?? ) =?? -1
(?? (?? ))=
1
?? sin ????
?? -1
(?? (?? )?? (?? )) =?? *?? =??
?? 0
??? (?? )?? (?? -?? )????
 =
1
?? 2
??
?? 0
?sin ???? sin ?? (?? -?? )????
 
 =
1
2?? 2
??
?? 0
?(cos ?? (?? -2?? )-cos ???? )????
 =
1
2?? 2
[
sin ?? (?? -2?? )
-2?? -?? cos ???? ]
0
?? =
1
2?? 2
[
-sin ????
-2?? +
sin ????
2?? -?? cos ???? ]=
1
2?? 2
[
sin ????
?? -?? cos ???? ]
?? =?? {
1
2?? [
sin ????
?? -?? cos ???? ]cos ?? +(
?? 2?? sin ???? sin ?? )}
 =?? {
1
2?? 2
sin ???? cos ?? -
?? 2?? cos (???? +?? )}
 =
?? 2?? 2
{sin ???? cos ?? -???? cos (???? +?? )}
 
8.5 Solve the initial value problem 
?? ?? ?? ?? ?? ?? +?? =?? ?? -?? ?? ?????? ?? ,?? (?? )=?? ,?? (?? )=?? 
by using Laplace-transform. 
(2014 : 20 Marks) 
Solution: 
Given equation is 
                                 
?? 2
?? ?? ?? 2
+?? =8?? -2?? sin ?? 
?                            ?? '
+?? =8?? -2?? sin??                                                                         (??) 
                      
 ?  Taking Laplace transform of both sides of (??) , we get 
                ?? (?? '
)+?? (?? )=8?? (?? -2?? sin ?? )
 ? ?? 2
?? {(?? )}-???? (0)-?? '
(0)+?? (?? (?? )=
8
(?? +2)
2
+1
 ?                                ?? 2
?? {(?? )}+?? {?? (?? )}=
8
?? 2
+4?? +5
 ?                                     ?? (?? (?? ))(?? 2
+1)=
8
?? 2
+4?? +5
 ?                                                      ?? {?? (?? )}=
8
(?? 2
+1)(?? 2
+4?? +5)
 ?                                                            ?? (?? )=?? -1
8
(?? 2
+1)(?? 2
+4?? +5)
                                                                  ?? (?? )=?? -1
[
-?? +1
?? 2
+1
+
?? +3
?? 2
+4?? +5
]
                                                                           =?? -1
(
-?? ?? 2
+1
)+?? -1
(
1
?? 2
+1
)+?? -1
(
(?? +2)+1
(?? +2)
2
+1
)
                                                                           =-cos ?? +sin ?? +?? -2?? ?? -1
(
?? +1
?? 2
+1
)
 
 =-cos ?? +sin ?? +?? -2?? {?? -1
(
?? ?? 2
+1
)··-1(
1
?? 2
+1
)}
 =-cos ?? +sin ?? +?? -2?? cos ?? +?? -2?? sin ?? =(?? -2?? -1)cos ?? +(?? -2?? +1)sin ?? 
which is the required solution. 
8.6 
(i)  Obtain Laplace Inverse transform of 
?? (?? )={???? (?? +
?? ?? ?? )+
?? ?? ?? +????
?? -????
} 
(2015 : 6 Marks) 
(ii) Using Laplace transform, solve: 
?? ''
+?? =?? ,?? (?? )=?? ,?? (?? )=-?? 
(2015 : 6 Marks) 
Solution: 
Read More
387 videos|203 docs

Top Courses for UPSC

387 videos|203 docs
Download as PDF
Explore Courses for UPSC exam

Top Courses for UPSC

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

pdf

,

shortcuts and tricks

,

Laplace and inverse Laplace Transformation and Properties | Mathematics Optional Notes for UPSC

,

Extra Questions

,

video lectures

,

Summary

,

Viva Questions

,

MCQs

,

practice quizzes

,

past year papers

,

Sample Paper

,

Objective type Questions

,

Important questions

,

Laplace and inverse Laplace Transformation and Properties | Mathematics Optional Notes for UPSC

,

study material

,

Free

,

mock tests for examination

,

Previous Year Questions with Solutions

,

Semester Notes

,

Exam

,

Laplace and inverse Laplace Transformation and Properties | Mathematics Optional Notes for UPSC

,

ppt

;