NEET Exam  >  NEET Notes  >  Physics Class 11  >  Mechanical Properties of Solids

Mechanical Properties of Solids | Physics Class 11 - NEET PDF Download

Till now we have learned that solids have fixed shapes and dimensions i.e. they are rigid. You must have observed that if a weight is hung from the end of a vertically hung steel spring, it gets stretched. When the weight is removed, it goes back to its original shape and size. This shows that steel spring has some elastic behavior!

Stretching of SpringsStretching of Springs

In this document, we will be studying the Elasticity of solids in detail.  

Elastic Behaviour of Solids

The property of the body to regain its original configuration (length, volume, or shape) when the deforming forces are removed, is called elasticity.

Spring-ball model for the illustration of elastic behavior of solidsSpring-ball model for the illustration of elastic behavior of solids

  • In a solid, atoms and molecules are arranged in such a way that each molecule is acted upon by the forces due to the neighboring molecules. These forces are known as intermolecular forces.  For instance, assume the atoms or molecules of solid as the balls in the image below and the springs represent the interatomic or intermolecular forces. This is called the spring-ball model of solids.
  • In this system, if any ball is displaced from its equilibrium position, the ball attached to it will be stretched or compressed. Due to this, restoring forces will come into play and force the ball to come back to its original position. This leads to elastic behavior in solids. 
  • The change in the shape or size of a body when external forces act on it is determined by the forces between its atoms or molecules. These short-range atomic forces are called elastic forces.

Question for Mechanical Properties of Solids
Try yourself:
What is the definition of stress?
View Solution

1. Deforming force 

A force that when applied changes the normal position of the molecules thus resulting in the change of configuration of the body.

2. Elastic body

A body that regains its original configuration immediately and completely after the removal of deforming force from it is called a perfectly elastic body. Quartz and phosphorus bronze are examples of nearly perfectly elastic bodies.

Elastic MaterialsElastic Materials

3. Plastic body
The inability of a body to return to its original size and shape even on removal of the deforming force is called plasticity and such a body is called a plastic body.

Plastic MaterialsPlastic Materials

Question for Mechanical Properties of Solids
Try yourself:The ability of the material to deform without breaking is called:
View Solution

Stress

Stress is defined as the ratio of the internal force F, produced when the substance is deformed, to the area A over which this force acts.

In equilibrium, this force is equal in magnitude to the externally applied force. In other words,

Mechanical Properties of Solids | Physics Class 11 - NEETThe SI Unit of stress is newton per square meter (Nm-2).In CGS units, stress is measured in dyne cm-2. The dimensional formula of stress is ML-1T-2 

Stress is of two types:

1. Normal stress: It is defined as the restoring force per unit area perpendicular to the surface of the body. Normal stress is of two types, tensile stress and compressive stress.

Tensile and compressive stressTensile and compressive stress

2. Tangential stress: When the elastic restoring force or deforming force acts parallel to the surface area, the stress is called tangential stress or shear stress.

Tangential StressTangential Stress

Question for Mechanical Properties of Solids
Try yourself:A 20kg load is suspended by a wire of cross section 0.4mm2. The stress produced in N/m2 is :
View Solution

Strain

It is defined as the ratio of the change in size or shape to the original size or shape. It has no dimensions, it is just a number.

Strain is of three types:

1. Longitudinal strain: If the deforming force produces a change in length alone, the strain produced in the body is called longitudinal strain or tensile strain.
It is given as:

Mechanical Properties of Solids | Physics Class 11 - NEET

Longitudinal strainLongitudinal strain

2. Volumetric strain: If the deforming force produces a change in volume alone, the strain produced in the body is called volumetric strain. It is given as:

Mechanical Properties of Solids | Physics Class 11 - NEET

Volumetric strainVolumetric strain3. Shear strain: The angle tilt caused in the body due to tangential stress expressed is called shear strain. It is given as:
Mechanical Properties of Solids | Physics Class 11 - NEET

Shear strainShear strain

The maximum stress to which the body can regain its original status on the removal of the deforming force is called the elastic limit.

Question for Mechanical Properties of Solids
Try yourself:Shearing strain is expressed by
View Solution

Hooke’s Law

Hooke’s law states that, within elastic limits, the ratio of stress to the corresponding strain produced is a constant.

Mechanical Properties of Solids | Physics Class 11 - NEET

This constant is called the modulus of elasticity. Thus,

Mechanical Properties of Solids | Physics Class 11 - NEET

Stress-Strain Curve

Stress-strain curves are useful to understand the tensile strength of a given material. The given figure shows a stress-strain curve of a given metal.

Stress-strain curveStress-strain curve

  • The curve from O to A is linear. In this region, Hooke’s Proportional limit law is obeyed.
  • In the region from A to B stress and strain are not proportional. Still, the body regains its original dimension, once the load is removed.
  • Point B in the curve is the yield point or elastic limit and the corresponding stress is known as yield strength of the material.
  • The curve beyond B shows the region of plastic deformation.
  • The point D on the curve shows the tensile strength of the material. Beyond this point, additional strain leads to fracture, in the given material.

Young's Modulus of Elasticity (Y)

Young's modulus (Y) quantifies the elasticity of a material in terms of its ability to withstand changes in length under longitudinal stress. It is defined as the ratio of longitudinal stress to longitudinal strain within the elastic limit, which is the range where the material returns to its original shape after the deforming force is removed.

Mechanical Properties of Solids | Physics Class 11 - NEET

Where:

  • F is the force applied,
  • AA is the cross-sectional area,
  • \Delta LΔL is the change in length,
  • L is the original length.

Unit: Newton per square meter (N/m\text{N/m}^2N/m2)

Dimensions: M1L-1T-2M^1 L^{-1} T^{-2}

Question for Mechanical Properties of Solids
Try yourself:
What is the property of a body to regain its original configuration when the deforming forces are removed known as?
View Solution

Bulk Modulus of Elasticity (K or B)

The bulk modulus (K or B) measures a material's resistance to uniform compression. It is the ratio of volume stress to volume strain, applicable when the deforming force is applied equally from all directions, causing a change in volume.

Mechanical Properties of Solids | Physics Class 11 - NEET

The negative sign indicates that an increase in pressure results in a decrease in volume.

Unit: Newton per square meter (N/m2)

Process-Dependence for Ideal Gases:

  • Isothermal process: K=P
  • Adiabatic process: K=γPmma P (where γ\gamma is the adiabatic index)
  • Polytropic process: K=nPK = nP (where nn is the polytropic index)

Compressibility: The reciprocal of the bulk modulus

C=1KC = \frac{1}{K}

Modulus of Rigidity (η)

The modulus of rigidity (η), also known as the shear modulus, measures a material's resistance to shear deformation. It is defined as the ratio of shearing stress to shearing strain within the elastic limit.

Mechanical Properties of Solids | Physics Class 11 - NEET

Where:

  • tangentialF_{\textFtangential is the tangential force,
  • A is the area,
  • \phiϕ is the shear angle.

Poisson's Ratio (σ)

Poisson's ratio (σ) is a measure of the transverse strain (contraction or expansion) relative to the longitudinal strain when a material is stretched or compressed.

Mechanical Properties of Solids | Physics Class 11 - NEET

Where:

  • Δd\Delta d is the change in diameter,
  • dd is the original diameter,
  • ΔL\Delta L is the change in length,
  • LL is the original length.
Question for Mechanical Properties of Solids
Try yourself:
Which of the following measures a material's resistance to shear deformation?
View Solution

Work Done in Stretching a Wire

When a wire is stretched, the work done is stored as elastic potential energy. For a wire of original length L0L_0L0 stretched by a distance ΔL\Delta LΔL:

Mechanical Properties of Solids | Physics Class 11 - NEET

Mechanical Properties of Solids | Physics Class 11 - NEET

Effect of Temperature on Elasticity

Increasing temperature generally reduces the elastic properties of materials. This means the elastic constants, such as Young's modulus, decrease, leading to increased plasticity (permanent deformation). However, some materials, like INVAR steel, maintain consistent elastic properties over a range of temperatures, making them valuable for applications requiring dimensional stability.

Effect of Impurity on Elasticity

Impurities can alter the elastic properties of a material. Typically, adding impurities increases the Young's modulus because the impurities can enhance the intermolecular forces within the material, making it more resistant to deformation under an applied force. This increased resistance results in a stiffer material with higher elasticity.

Summary

  • Elasticity is a measure of the deformation of an object when a force is applied. Objects that are very elastic like rubber have high elasticity and stretch easily.
  • Stress is force over an area.
  • Strain is the change in length over the original length.
  • Most objects behave elastically for small strains and return to their original shape after being bent.
  • If the strain on an object is greater than the elastic limit of the object, it will permanently deform or eventually fracture. Fracture strength is a measure of the force needed to break an object.
The document Mechanical Properties of Solids | Physics Class 11 - NEET is a part of the NEET Course Physics Class 11.
All you need of NEET at this link: NEET
102 videos|411 docs|121 tests

Top Courses for NEET

FAQs on Mechanical Properties of Solids - Physics Class 11 - NEET

1. What is Hooke's Law?
Ans. Hooke's Law states that the stress applied to a solid material is directly proportional to the strain produced within the elastic limit of that material.
2. What is Young's Modulus of Elasticity?
Ans. Young's Modulus of Elasticity (Y) is a measure of the stiffness of a material. It is the ratio of stress to strain in a material within the elastic limit.
3. What is the significance of the Stress-Strain Curve in the study of elastic behavior of solids?
Ans. The Stress-Strain Curve provides valuable information about the behavior of a material under stress, including its elastic limit, yield point, and ultimate strength. It helps in understanding the mechanical properties of solids.
4. How is Poisson's Ratio related to the elastic behavior of solids?
Ans. Poisson's Ratio (σ) is a measure of the ratio of lateral strain to longitudinal strain within a material. It is important in understanding how a material deforms under stress and provides insights into its elastic behavior.
5. How is the Bulk Modulus of Elasticity different from Young's Modulus of Elasticity?
Ans. The Bulk Modulus of Elasticity (K or B) measures a material's resistance to uniform compression, while Young's Modulus of Elasticity measures its resistance to deformation in tension or compression. Both are important in studying the elastic behavior of solids, but they focus on different aspects of deformation.
102 videos|411 docs|121 tests
Download as PDF
Explore Courses for NEET exam

Top Courses for NEET

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

Exam

,

Mechanical Properties of Solids | Physics Class 11 - NEET

,

Important questions

,

study material

,

ppt

,

Mechanical Properties of Solids | Physics Class 11 - NEET

,

Objective type Questions

,

shortcuts and tricks

,

MCQs

,

Mechanical Properties of Solids | Physics Class 11 - NEET

,

Viva Questions

,

Summary

,

Previous Year Questions with Solutions

,

Sample Paper

,

Free

,

past year papers

,

practice quizzes

,

video lectures

,

pdf

,

Semester Notes

,

mock tests for examination

,

Extra Questions

;