NEET Exam  >  NEET Notes  >  Physics Class 11  >  NCERT Solutions: Oscillations

NCERT Solutions Class 11 Physics Chapter 13 - Oscillations

Q13.1: Which of the following examples represents periodic motion?
(a) A swimmer completing one (return) trip from one bank of a river to the other and back.
(b) A freely suspended bar magnet displaced from its N-S direction and released.
(c) A hydrogen molecule rotating about its center of mass.
(d) An arrow released from a bow.
Ans: (a) The swimmer’s motion is not periodic. The motion of the swimmer between the banks of a river is back and forth. However, it does not have a definite period. This is because the time taken by the swimmer during his back-and-forth journey may not be the same.
(b) The motion of a freely-suspended magnet, if displaced from its N-S direction and released, is periodic. This is because the magnet oscillates about its position within a definite period of time.
(c) When a hydrogen molecule rotates about its center of mass, it comes to the same position again and again after an equal interval of time. Such motion is periodic.
(d) An arrow released from a bow moves only in the forward direction. It does not come backward. Hence, this motion is not periodic.

Q13.2: Which of the following examples represents (nearly) simple harmonic motion and which represents periodic but not simple harmonic motion?
(a) the rotation of the earth about its axis.
(b) motion of an oscillating mercury column in a U-tube.
(c) motion of a ball bearing inside a smooth curved bowl, when released from a point slightly above the lowermost point.
(d) general vibrations of a polyatomic molecule about its equilibrium position.
Ans: (b) and (c) are SHMs
(a) and (d) are periodic, but not SHMs
(a) During its rotation about its axis, the earth comes to the same position again and again in equal intervals of time. Hence, it is a periodic motion. However, this motion is not simple harmonic. This is because the earth does not have a to-and-fro motion about its axis.
(b) An oscillating mercury column in a U-tube is simple harmonic. This is because the mercury moves to and fro on the same path, about the fixed position, within a certain period of time.
(c) The ball moves to and fro about the lowermost point of the bowl when released. Also, the ball comes back to its initial position in the same period of time, again and again. Hence, its motion is periodic as well as simple harmonic.
(d) A polyatomic molecule has many natural frequencies of oscillation. Its vibration is the superposition of individual simple harmonic motions of a number of different molecules. Hence, it is not simply harmonic, but periodic.

Q13.3: Figure 13.18 depicts four x-t plots for the linear motion of a particle. Which of the plots represents periodic motion? What is the period of motion (in the case of periodic motion)?
NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
Ans: (b) and (d) are periodic
(a) It is not a periodic motion. This represents a unidirectional, linear uniform motion. There is no repetition of motion in this case.
(b) In this case, the motion of the particle repeats itself after 2 s. Hence, it is a periodic motion, having a period of 2 s.
(c) It is not a periodic motion. This is because the particle repeats the motion in one position only. For a periodic motion, the entire motion of the particle must be repeated in equal intervals of time.
(d) In this case, the motion of the particle repeats itself after 2 s. Hence, it is a periodic motion, having a period of 2 s.

Q13.4: Which of the following functions of time represent (a) simple harmonic, (b) periodic but not simple harmonic, and (c) non-periodic motion? Give a period for each case of periodic motion (ω is any positive constant):
(a) sin ωt – cos ωt
(b) sin3 ωt
(c) 3 cos (π/4 – 2ωt)
(d) cos ωt + cos 3ωt + cos 5ωt
(e) exp (–ω2t2)
(f) 1 + ωt  + ω2t2
Ans: (a) SHM
The given function is:
 NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
This function represents SHM as it can be written in the form: NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
Its period is: NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
(b) Periodic, but not SHM
The given function is:
 NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
The terms sin ωt and sin ωt individually represent simple harmonic motion (SHM). However, the superposition of two SHM is periodic and not simple harmonic.
(c) SHM
The given function is:
 NCERT Solutions Class 11 Physics Chapter 13 - Oscillations 
This function represents simple harmonic motion because it can be written in the form:NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
Its period is: NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
(d) Periodic, but not SHM
The given function is NCERT Solutions Class 11 Physics Chapter 13 - Oscillations .
Each individual cosine function represents SHM. However, the superposition of three simple harmonic motions is periodic, but not simple harmonic.
(e) Non-periodic motion
The given function NCERT Solutions Class 11 Physics Chapter 13 - Oscillations  is an exponential function. Exponential functions do not repeat themselves. Therefore, it is a non-periodic motion.
(f) The given function 1 + ωt  + ω2t2 is non-periodic.

Q13.5: A particle is in linear simple harmonic motion between two points, A and B, 10 cm apart. Take the direction from A to B as the positive direction and give the signs of velocity, acceleration and force on the particle when it is
(a) at the end A,
(b) at the end B,
(c) at the mid-point of AB going towards A,
(d) at 2 cm away from B going towards A,
(e) at 3 cm away from A going towards B, and
(f) at 4 cm away from B going towards A.
Ans: (a) Zero, Positive, Positive
(b) Zero, Negative, Negative
(c) Negative, Zero, Zero
(d) Negative, Negative, Negative
(e) Zero, Positive, Positive
(f) Negative, Negative, Negative
Explanation:
The given situation is shown in the following figure. Points A and B are the two end points, with AB = 10 cm. O is the midpoint of the path.
 NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
A particle is in linear simple harmonic motion between the end points
(a) At the extreme point A, the particle is at rest momentarily. Hence, its velocity is zero at this point.
Its acceleration is positive as it is directed along AO.
Force is also positive in this case as the particle is directed rightward.
(b) At the extreme point B, the particle is at rest momentarily. Hence, its velocity is zero at this point.
Its acceleration is negative as it is directed along B.
Force is also negative in this case as the particle is directed leftward.
(c) NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
The particle is executing a simple harmonic motion. O is the mean position of the particle. Its velocity at the mean position O is the maximum. The value for velocity is negative as the particle is directed leftward. The acceleration and force of a particle executing SHM is zero at the mean position.
(d) NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
The particle is moving toward point O from the end B. This direction of motion is opposite to the conventional positive direction, which is from A to B. Hence, the particle’s velocity and acceleration, and the force on it are all negative.
(e) NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
The particle is moving toward point O from the end A. This direction of motion is from A to B, which is the conventional positive direction. Hence, the values for velocity, acceleration, and force are all positive.
(f) NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
This case is similar to the one given in (d).

Q13.6: Which of the following relationships between the acceleration and the displacement of a particle involve simple harmonic motion?
(a) = 0.7x   
(b) = –200x2
(c) = –10
(d) = 100x3
Ans: (c) A motion represents simple harmonic motion if it is governed by the force law:
F = –kx
ma = –k
 NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
Where,
F is the force
m is the mass (a constant for a body)
x is the displacement
a is the acceleration
k is a constant
Among the given equations, only equation a = –10 is written in the above form with  k/m = 10
Hence, this relation represents SHM.

Q13.7: The motion of a particle executing simple harmonic motion is described by the displacement function,
x (t) = cos (ω φ).
If the initial (= 0) position of the particle is 1 cm and its initial velocity is ω cm/s, what are its amplitude and initial phase angle? The angular frequency of the particle is π s–1. If instead of the cosine function, we choose the sine function to describe the SHM: x = B sin (ωt  α), what are the amplitude and initial phase of the particle with the above initial conditions.
Ans: Initially, at t = 0:
Displacement, x = 1 cm
Initial velocity, v = ω cm/sec.
Angular frequency, ω = π rad/s–1
It is given that:
  NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
Squaring and adding equations (T) and (ii)= we get:
NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
Dividing equation (ii) by equation (j). we get:
NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
SHM is given as:
NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
Putting the given values in this equation, we get;
NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
Substituting the given values, we get:
NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
Squaring and adding equations (iii) and (iv)= we get:
NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
Dividing equation (iii) by equation (iv): we get:
NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
NCERT Solutions Class 11 Physics Chapter 13 - Oscillations 

Q13.8: A spring balance has a scale that reads from 0 to 50 kg. The length of the scale is 20 cm. A body suspended from this balance, when displaced and released, oscillates with a period of 0.6 s. What is the weight of the body? 
Ans: Maximum mass that the scale can read, M = 50 kg
Maximum displacement of the spring = Length of the scale, l = 20 cm = 0.2 m
Time period, T = 0.6 s
Maximum force exerted on the spring, F = Mg
Where,
g = acceleration due to gravity = 9.8 m/s2
= 50 x 9.8 = 490
∴ Spring constant,  NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
Mass m, is suspended from the balance.
Time period,
 NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
∴Weight of the body = mg = 22.36 x 9.8 = 219.167 N
Hence, the weight of the body is about 219 N.

Q13.9: A spring with a spring constant of 1200 N m–1 is mounted on a horizontal table as shown in Fig. A mass of 3 kg is attached to the free end of the spring. The mass is then pulled sideways to a distance of 2.0 cm and released.
 NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
Determine (i) the frequency of oscillations, (ii) the maximum acceleration of the mass, and (iii) the maximum speed of the mass.
Ans: Spring constant, k = 1200 N m–1
Mass, = 3 kg
Displacement, A = 2.0 cm = 0.02 cm
(i) Frequency of oscillation v, is given by the relation:
NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
Hence, the frequency of oscillations is 3.18 cycles per second.
(ii) Maximum acceleration (a) is given by the relation:
a = ω2 A
Where,
NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
Hence, the maximum acceleration of the mass is 8.0 m/s2.
(iii) Maximum velocity, vmax = Aω
  NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
Hence, the maximum velocity of the mass is 0.4 m/s.

Ques 13.10: In Exercise 13.9, let us take the position of mass when the spring is unstretched as x = 0, and the direction from left to right as the positive direction of x-axis. Give as a function of time t for the oscillating mass if at the moment we start the stopwatch (= 0), the mass is
(a) at the mean position,
(b) at the maximum stretched position, and
(c) at the maximum compressed position.
In what way do these functions for SHM differ from each other, in frequency, in amplitude or the initial phase?
Ans: (a) x = 2sin 20t
(b) x = 2cos 20t
(c) x = –2cos 20t
The functions have the same frequency and amplitude, but different initial phases.
Distance travelled by the mass sideways, A = 2.0 cm
Force constant of the spring, k = 1200 N m–1
Mass, m = 3 kg
Angular frequency of oscillation:
 NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
 = 20 rad s–1
(a) When the mass is at the mean position, initial phase is 0.
Displacement, x = Asin ωt
2sin 20t
(b) At the maximum stretched position, the mass is toward the extreme right. Hence, the initial phase is .NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
Displacement, NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
  NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
= 2cos 20t
(c) At the maximum compressed position, the mass is toward the extreme left. Hence, the initial phase is .NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
Displacement, NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
Che functions have the same frequency  NCERT Solutions Class 11 Physics Chapter 13 - Oscillations and amplitude (2 cm): but different initial phases NCERT Solutions Class 11 Physics Chapter 13 - Oscillations

Q13.11: Figures 13.20 correspond to two circular motions. The radius of the circle, the period of revolution, the initial position, and the sense of revolution (i.e. clockwise or anti-clockwise) are indicated on each figure.
  NCERT Solutions Class 11 Physics Chapter 13 - OscillationsNCERT Solutions Class 11 Physics Chapter 13 - Oscillations
Obtain the corresponding simple harmonic motions of the x-projection of the radius vector of the revolving particle P, in each case.
Ans: (a) Time period, = 2 s
Amplitude, A = 3 cm
At time, = 0, the radius vector OP makes an angle   NCERT Solutions Class 11 Physics Chapter 13 - Oscillations  with the positive x-axis, i.e., phase angle NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
Therefore, the equation of simple harmonic motion for the x-projection of OP, at time t, is given by the displacement equation:
 NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
(b) Time period, = 4 s
Amplitude, a = 2 m
At time t = 0, OP makes an angle π with the x-axis, in the anticlockwise direction. Hence, phase angle, Φ = π
Therefore, the equation of simple harmonic motion for the x-projection of OP, at time t, is given as:
 NCERT Solutions Class 11 Physics Chapter 13 - Oscillations

Q13.12: Plot the corresponding reference circle for each of the following simple harmonic motions. Indicate the initial (= 0) position of the particle, the radius of the circle, and the angular speed of the rotating particle. For simplicity, the sense of rotation may be fixed to be anticlockwise in every case: (is in cm and is in s).
(a) = –2 sin (3 π/3)
(b) = cos (π/6 – t)
(c) = 3 sin (2π π/4)
(d) = 2 cos πt
Ans: (a) NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
If this equation is compared with the standard SHM equation , then we get:
NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
 NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
The motion of the particle can be plotted as shown in the following figure.
 NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
(b) NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
If this equation is compared with the standard SHM equation , then we get:
 NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
The motion of the particle can be plotted as shown in the following figure.
 NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
(c)  NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
If this equation is compared with the standard SHM equation , then we get:
NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
Amplitude, A = 3 cm
Phase angle,  NCERT Solutions Class 11 Physics Chapter 13 - Oscillations = 135
Angular velocity,
NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
The motion of the particle can be plotted as shown in the following figure.
 NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
(d) x = 2 cos πt
If this equation is compared with the standard SHM equation , then we get:
NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
Amplitude, A = 2 cm
Phase angle, Φ = 0
Angular velocity, ω = π rad/s
The motion of the particle can be plotted as shown in the following figure.
 NCERT Solutions Class 11 Physics Chapter 13 - Oscillations

Q13.13: Figure 13.21 (a) shows a spring of force constant clamped rigidly at one end and a mass attached to its free end. A force F applied at the free end stretches the spring. Figure 13.30 (b) shows the same spring with both ends free and attached to a mass at either end. Each end of the spring in Fig. 13.30(b) is stretched by the same force F.
 NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
(a) What is the maximum extension of the spring in the two cases?
(b) If the mass in Fig. (a) and the two masses in Fig. (b) are released, what is the period of oscillation in each case?
Ans: (a) For the one block system:
When a force F, is applied to the free end of the spring, an extension l, is produced. For the maximum extension, it can be written as:
F = kl
Where, k is the spring constant
Hence, the maximum extension produced in the spring,
NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
For the two block system:
The displacement (x) produced in this case is:
NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
(b) For the one block system:
For mass (m) of the block, force is written as:
NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
Where, x is the displacement of the block in time t
NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
It is negative because the direction of elastic force is opposite to the direction of displacement.
NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
Where,
ω is angular frequency of the oscillation
∴Time period of the oscillation.; NCERT Solutions Class 11 Physics Chapter 13 - Oscillations 
NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
For the two block system:
NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
It is negative because the direction of elastic force is opposite to the direction of displacement.
NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
Angular frequency. NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
∴Time period,
NCERT Solutions Class 11 Physics Chapter 13 - Oscillations

Q13.14: The piston in the cylinder head of a locomotive has a stroke (twice the amplitude) of 1.0 m. If the piston moves with simple harmonic motion with an angular frequency of 200 rad/min, what is its maximum speed?
Ans: Stroke = 1.0 m
Amplitude, NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
The maximum speed (vmax) of the piston is give by the relation
NCERT Solutions Class 11 Physics Chapter 13 - Oscillations 

Q13.15: The acceleration due to gravity on the surface of moon is 1.7 ms–2. What is the time period of a simple pendulum on the surface of moon if its time period on the surface of earth is 3.5 s? (on the surface of earth is 9.8 ms–2)
Ans: Acceleration due to gravity on the surface of moon,  = 1.7 m s–2
Acceleration due to gravity on the surface of earth, g = 9.8 m s–2
Time period of a simple pendulum on earth, T = 3.5 s
 NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
Where,
NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
The length of the pendulum remains constant.
On moon's surface, time period, NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
Hence, the time period of the simple pendulum on the surface of moon is 8.4 s.

Q13.16: A simple pendulum of length and having a bob of mass is suspended in a car. The car is moving on a circular track of radius with a uniform speed v. If the pendulum makes small oscillations in a radial direction about its equilibrium position, what will be its time period?
Ans: The bob of the simple pendulum will experience the acceleration due to gravity and the centripetal acceleration provided by the circular motion of the car.
Acceleration due to gravity = g
Centripetal acceleration
NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
Where,
v is the uniform speed of the car
R is the radius of the track
Effective acceleration (aeff) is given as:
 NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
Time period,
NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
Where, l is the length of the pendulum
∴Time period, NCERT Solutions Class 11 Physics Chapter 13 - Oscillations

Q13.17: Cylindrical piece of cork of density of base area and height floats in a liquid of density . The cork is depressed slightly and then released. Show that the cork oscillates up and down simple harmonically with a period
 NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
where ρ is the density of cork. (Ignore damping due to viscosity of the liquid).
Ans: Base area of the cork = A
Height of the cork = h
Density of the liquid =
Density of the cork = ρ
In equilibrium:
Weight of the cork = Weight of the liquid displaced by the floating cork
Let the cork be depressed slightly by x. As a result, some extra water of a certain volume is displaced. Hence, an extra up-thrust acts upward and provides the restoring force to the cork.
Up-thrust = Restoring force, F = Weight of the extra water displaced
F = NCERT Solutions Class 11 Physics Chapter 13 - Oscillations –(Volume x Density x g)
Volume = Area x Distance through which the cork is depressed
Volume = Ax
NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
According to the force law:
F = kx
NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
Where, £is a constant
NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
The time period of the oscillations of the cork:
NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
Where,
m = Mass of the cork
= Volume of the cork x Density
= Base area of the cork x Height of the cork x Density of the cork
NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
Hence, the expression for the time period becomes:
NCERT Solutions Class 11 Physics Chapter 13 - Oscillations

Q13.18: One end of a U-tube containing mercury is connected to a suction pump and the other end to atmosphere. A small pressure difference is maintained between the two columns. Show that, when the suction pump is removed, the column of mercury in the U-tube executes simple harmonic motion.
Ans: Area of cross-section of the U-tube = A
Density of the mercury column = ρ
Acceleration due to gravity = g
Restoring force, F = Weight of the mercury column of a certain height
F = –(Volume x Density x g)
F = –(A x 2h x ρ xg) = –2gh = –k x Displacement in one of the arms (h)
Where,
2h is the height of the mercury column in the two arms
k is a constant, given by
NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
Time period,
NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
Where,
m is the mass of the mercury column
Let l be the length of the total mercury in the U-tube.
Mass of mercury, m = Volume of mercury x Density of mercury = Alρ
NCERT Solutions Class 11 Physics Chapter 13 - Oscillations
Hence, the mercury column executes simple harmonic motion with time period NCERT Solutions Class 11 Physics Chapter 13 - Oscillations 

The document NCERT Solutions Class 11 Physics Chapter 13 - Oscillations is a part of the NEET Course Physics Class 11.
All you need of NEET at this link: NEET
97 videos|382 docs|103 tests

Top Courses for NEET

FAQs on NCERT Solutions Class 11 Physics Chapter 13 - Oscillations

1. What is an oscillation in physics?
Ans. An oscillation in physics refers to a periodic motion around an equilibrium point. This motion repeats itself at regular intervals.
2. What are some examples of oscillations in everyday life?
Ans. Some examples of oscillations in everyday life include swinging pendulums, vibrating guitar strings, and the motion of a tuning fork.
3. How is the frequency of an oscillation related to its period?
Ans. The frequency of an oscillation is the number of complete cycles it makes in a unit of time, while the period is the time it takes to complete one cycle. The frequency is the reciprocal of the period, meaning that as the frequency increases, the period decreases.
4. What is the relationship between amplitude and energy in an oscillating system?
Ans. The amplitude of an oscillating system is directly proportional to the energy stored in the system. As the amplitude of the oscillation increases, so does the energy.
5. How does damping affect the motion of an oscillating system?
Ans. Damping in an oscillating system refers to the decrease in amplitude over time due to external forces like friction. Damping causes the oscillations to gradually decrease in size and eventually come to a stop.
97 videos|382 docs|103 tests
Download as PDF
Explore Courses for NEET exam

Top Courses for NEET

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

ppt

,

shortcuts and tricks

,

Viva Questions

,

Previous Year Questions with Solutions

,

Semester Notes

,

past year papers

,

practice quizzes

,

Extra Questions

,

Sample Paper

,

Exam

,

NCERT Solutions Class 11 Physics Chapter 13 - Oscillations

,

Objective type Questions

,

Important questions

,

mock tests for examination

,

study material

,

Summary

,

Free

,

video lectures

,

NCERT Solutions Class 11 Physics Chapter 13 - Oscillations

,

NCERT Solutions Class 11 Physics Chapter 13 - Oscillations

,

MCQs

,

pdf

;