Overview of Carbon and Covalent Bonding in Carbon Class 10 Notes | EduRev

Science Class 10

Created by: Dr Manju Sen

Class 10 : Overview of Carbon and Covalent Bonding in Carbon Class 10 Notes | EduRev

The document Overview of Carbon and Covalent Bonding in Carbon Class 10 Notes | EduRev is a part of the Class 10 Course Science Class 10.
All you need of Class 10 at this link: Class 10

Introduction:
The compounds obtained from 'Carbon' are widely used. For example, clothes, medicines, books, food, fertilizer, fuel etc. all living structures are carbon based.

Overview of Carbon and Covalent Bonding in Carbon Class 10 Notes | EduRevFig: Carbon  The amount of carbon present in the earth's crust and in the atmosphere is quite large. The earth's crust has only 0.02% carbon in the form of mineral (like carbonates, hydrogen-carbonates, coal and petroleum) and the atmosphere has 0.03% of carbon dioxide. In spite of this small amount of carbon available in nature, the importance of carbon seems to be immense.

Carbon forms a large number of compounds with hydrogen which are known as hydrocarbons. In addition to hydrogen, carbon compound may also contain some other element such as oxygen, halogen, nitrogen, phosphorus, sulphur etc. The number of compounds of carbon are more than three million which is much larger than the compounds formed by all other elements put together.


BONDING IN CARBON COMPOUNDS: 
Carbon forms covalent bonds in its compounds with other atoms. In each compound, the valency of carbon is four. That is, carbon has tetravalent character. But what is covalent bond and what is meaning of tetravalent ?


Why does a carbon atom form only covalent bond?
The atomic number of carbon is 6 and first shell contains just two electrons and second shell (Outermost shell) contains four electrons.
Carbon atom can attain the noble gas configuration by sharing its valence electrons with other atoms of carbon or with atoms of other elements and form covalent bond.


COVALENT BOND: 
A chemical bond formed between two atoms of the same element or two atoms of different elements by sharing of electrons is called a covalent bond. 

Overview of Carbon and Covalent Bonding in Carbon Class 10 Notes | EduRevFig: Carbon forming covalent bondNecessary conditions of the formation of covalent bond: 
- The combining atoms should have nonmetallic character.
- The combining atoms should contain 4 to 7 electrons in their respective valence shell.
- In hydrogen there is only 1 valence electron, but it also forms covalent bond.
- The combining atoms need 1, 2, 3 or 4 electrons to complete their octet (hydrogen completes its duplet).
- The combining atoms should contribute equal number of electrons to form pair of electrons to be shared

- After sharing the pair of electrons each combining atoms should attain stable electronic configuration like its nearest noble gas.


CLASSIFICATION OF COVALENT BOND: 
On the basis of the number of electrons shared by two combining atoms, the covalent bond are of three types.

Single Covalent Bond: A single covalent bond is formed by the sharing of one pair of electrons between the two atoms. It is represented by one short line (---) between the two atoms.

Example: H-H, Cl -Cl, H-Cl, CH3-CH3.


Double Covalent Bond: A double covalent bond is formed by the sharing of two pairs of electrons between the two combining atoms. It is represented by putting (=) two short lines between the two bonded atoms.

Examples: O = O (O2), CO2 (O = C = O), H2C = CH2  


Triple covalent bond: A triple bond is formed by the sharing of three pair of electrons between the two combining atoms. It is represented by putting three short line (≡) betwen two bonded atoms.

Example: N2 (N≡N), CH≡CH.




 

Overview of Carbon and Covalent Bonding in Carbon Class 10 Notes | EduRevFig: N-N triple covalent bond

Formation of single covalent compounds 

Formation of hydrogen molecule (H2):

A molecule of hydrogen is composed to two H-atoms. The electronic configuration of H-atom is.

 

Overview of Carbon and Covalent Bonding in Carbon Class 10 Notes | EduRev

 

Overview of Carbon and Covalent Bonding in Carbon Class 10 Notes | EduRev

 

Overview of Carbon and Covalent Bonding in Carbon Class 10 Notes | EduRev

 H-H Bond in terms of energy shells (orbits)





 

Overview of Carbon and Covalent Bonding in Carbon Class 10 Notes | EduRevFig: H-H bond formation

Formation of chlorine molecule (Cl2). The atomic number of chlorine is 17, thus there are 17 electrons in an atom of chlorine.
Electronic configuration of Cl atom

                      Overview of Carbon and Covalent Bonding in Carbon Class 10 Notes | EduRev

Electronic configuration of Ar atom

                     Overview of Carbon and Covalent Bonding in Carbon Class 10 Notes | EduRev

Chlorine atom needs one electron more to complete its octet

Overview of Carbon and Covalent Bonding in Carbon Class 10 Notes | EduRevOverview of Carbon and Covalent Bonding in Carbon Class 10 Notes | EduRevOverview of Carbon and Covalent Bonding in Carbon Class 10 Notes | EduRevOverview of Carbon and Covalent Bonding in Carbon Class 10 Notes | EduRev

Atom-Atom Shared electrons Covalent Bond Chlorine molecule

Cl-Cl bond in terms of energy shell orbits





 

Overview of Carbon and Covalent Bonding in Carbon Class 10 Notes | EduRevFig: Clmolecule formation

Formation of hydrochloric acid (HCl): 

H atom has one valence electron. It needs 1 electron more to complete its duplet and chlorine atom has 7 valence electrons. It need 1 electron more to complete its octet and acquire stable electronic configuration.
 (2, 8, 8) like noble gas argon.





 

Overview of Carbon and Covalent Bonding in Carbon Class 10 Notes | EduRevFig: HCl molecule formation

Formation of oxygen (O2):
The atomic number of O atom is 8. There are 6 electron in the valence shell of oxygen atom it needs 2 more electrons to attain the nearest stable inert gas Neon (2, 8) configuration:


Formation of nitrogen molecule (N2):
The atomic number of nitrogen is 7 and its electronic configuration is K(2), L(5). It needs 3 electrons more to complete its octet like noble gas neon (2, 8).


Formation of ammonia molecule (NH3): The atomic number of N is 7. It's electronic configuration is 2, 5 there are 5 electrons in its valence shell. It needs 3 electrons more to complete its octet like noble gas neon (2, 8).


 

Overview of Carbon and Covalent Bonding in Carbon Class 10 Notes | EduRevFig: Formation of Ammonia molecule

Formation of H2O molecule: The electronic configuration of hydrogen is K (1) and that of oxygen is K(2) L(6). Thus, each hydrogen require one and oxygen required two electrons to achieve the stable electronic configuration.


 

Overview of Carbon and Covalent Bonding in Carbon Class 10 Notes | EduRevFig: Formation of H2O molecule

Formation of CO2 molecule: The atomic number of C is 6 and the electronic configuration of C is K(2), L(4) and that of oxygen is K(2), L(6) thus each carbon require 4 and oxygen require two electrons to achieve the stable electronic configuration. 


Formation of CH4 molecule: Methane is a covalent compound containing 4 covalent bond. It contains one carbon atom and four hydrogen atoms covalently bonded to central carbon atom.





 

Overview of Carbon and Covalent Bonding in Carbon Class 10 Notes | EduRev                                             Fig: Formation of CH4

Formation of carbon tetrachloride molecule (CCl4): The electronic configuration of carbon and chlorine atoms are (2, 4) and (2, 8, 7) respectively. Carbon atom needs four electrons and chlorine atom needs one electron to attain the stable electronic configuration.


Formation of ethylene or ethene molecule (C2H4): The electronic configuration of carbon atom is 2, 4. There are 4 valence electrons in one C atom. Each H atom contains 1 valence electron. Thus, there are 12 valence electrons present in ethene molecule.





 

Overview of Carbon and Covalent Bonding in Carbon Class 10 Notes | EduRevFig: Formation of Ethene


Formation of Acetylene or ethyne molecule (C2H2): 

 

Overview of Carbon and Covalent Bonding in Carbon Class 10 Notes | EduRevOverview of Carbon and Covalent Bonding in Carbon Class 10 Notes | EduRevOverview of Carbon and Covalent Bonding in Carbon Class 10 Notes | EduRev

 

Ques. What would be the electron dot structure of a molecule of sulphur which is made up of eight atoms of sulphur?
Ans. The eight atoms of sulphur are joined together in the form of a puckered ring. 





 

Overview of Carbon and Covalent Bonding in Carbon Class 10 Notes | EduRevFig: Electron dot structure of Sulphur


Non polar and polar covalent compounds: 
Non polar covalent bond: A covalent bond formed between two atoms of the same element or same electronegativity is called a non-polar covalent bond. Example : H2, N2, O2, Cl2 etc.


Polar covalent bond : The covalent bond between the atoms of two elements having different electronegativities is called a polar covlaent bond. Molecule in which the atom are bonded by a polar covalent bond are called polar molecules.

Note: In a polar covalent bond, the shared pair of electrons lies more toward the atom which is more electronegative.

Example : HCl, H2O & NH3

Note: δ means partial


Characteristics of covalent bond and covalent compounds: 
1.Characteristics of covalent bond: 

Covalent bond are formed by mutual sharing of electrons.

Note: Shared pair of electrons is also called bonding pair of electrons.

Covalent bond is directional in nature because shared pair of electrons remain localized in a definite space between the two atoms.


2. Characteristics of covalent compounds: 

Physical State: The covalent compounds are generally gases or liquids, but compounds with high molecular masses are solids.
Example: Solid: Urea, Glucose, Naphthalene.
Liquids: Water, ethanol, benzene.
Gases: Methane, chlorine, hydrogen, oxygen


Melting and boiling points: Covalent compounds have low melting and low boiling points because intermolecular forces (cohesive forces) in covalent compounds are weaker than those in ionic compounds.
Note: Some exception like diamond and graphite which are covalent solids have very high M.P. & B.P.


Solubility: Covalent compounds generally dissolve readily in organic solvents but they are less soluble in water.

For example: Napthalene which is an organic compound dissolves readily in organic solvents like ether but is insoluble in water. However some covalent compounds like urea, glucose, sugar etc. are soluble in water. Some polar covalent compounds like ammonia and hydrochloric acid are soluble in water.


Conductivity: Covalent compounds do not conduct electricity because they contain neither the ions nor free electrons necessary for conduction, So they do not conduct electricity

For example: Covalent compounds like glucose, alcohol, carbon tetrachloride do not conduct electricity.

 

Differences between ionic and covalent compounds: 

S .No.Electrovalent (Ionic) CompoundsCovalent Compounds
1Formed by transfer of electrons, (only single bond network exist)Formed by sharing of electrons (single, double & triple bond are formed).
2Usually crystalline solidUsually gases or liquid only a few of them are solid
3Generally have high melting and boiling pointsGenerally have low M.P. and B.P.
4Soluble in water but insoluble in organic solventsSoluble in organic solvent but insoluble or
 soluble in water
5Conduct electricity in solution or molten stateUsually non conductor of electricity
6Highly polar and ionise in water
 eg. Na Cl → Na+ + Cl

 

Usually Non-polar and do not ionise in water but few compounds are polar in nature and ionise in water

 

e g. HCl → H+ + Cl

 

 

ORGANIC COMPOUNDS 
The chemical compounds which are present in living organisms (plant and animal) are called organic compounds. The belief that formation of organic compounds was possible only in plants and animals led the scientists of early days to propose that Vital Force was necessary for the formation of such compounds. But the experimental work of Friedrich Wohler (German chemist) denied the idea of vital force when he prepared urea in his laboratory. (urea is an organic compound and waste product of urine).

Share with a friend

Complete Syllabus of Class 10

Dynamic Test

Content Category

Related Searches

ppt

,

Sample Paper

,

Exam

,

Summary

,

Objective type Questions

,

past year papers

,

Extra Questions

,

Overview of Carbon and Covalent Bonding in Carbon Class 10 Notes | EduRev

,

Important questions

,

Semester Notes

,

video lectures

,

Free

,

Overview of Carbon and Covalent Bonding in Carbon Class 10 Notes | EduRev

,

practice quizzes

,

study material

,

Viva Questions

,

shortcuts and tricks

,

mock tests for examination

,

MCQs

,

Previous Year Questions with Solutions

,

pdf

,

Overview of Carbon and Covalent Bonding in Carbon Class 10 Notes | EduRev

;