NEET Exam  >  NEET Notes  >  Chemistry Class 12  >  Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids

Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET PDF Download

(i) Physical Properties of Aldehydes and Ketones

  1. State at Room Temperature:

    • Methanal is a gas.
    • Ethanal is a liquid that evaporates easily.
    • Other aldehydes and ketones are usually liquid or solid.
  2. Boiling Points:

    • Aldehydes and ketones have higher boiling points than similar-sized hydrocarbons and ethers due to weak attractions between molecules (dipole-dipole interactions).
    • However, their boiling points are lower than alcohols of similar size because they lack hydrogen bonding between molecules.
  3. Solubility:

    • Lower aldehydes and ketones like methanal, ethanal, and propanone mix well with water because they can form hydrogen bonds with water molecules.
    • Solubility decreases as the alkyl chain lengthens.
    • Aldehydes and ketones dissolve well in organic solvents like benzene, ether, methanol, and chloroform.
  4. Odour:

    • Lower aldehydes have strong, sharp smells.
    • As molecules get bigger, the smell becomes less strong and more pleasant.
    • Many natural aldehydes and ketones are used in making perfumes and flavors.



(ii) Chemical Reactions of Aldehydes and Ketones

1. Nucleophilic Addition Reactions

(i) Mechanism:

  • Instead of electrons attacking, a nucleophile (like a negatively charged ion) attaches to the carbon atom in the carbonyl group.
  • This changes the carbon's structure from flat to more three-dimensional.
  • A temporary intermediate, called an alkoxide, is formed.
  • A proton (H+) from the environment combines with this intermediate to create a neutral product.
  • The end result is the addition of the nucleophile and a proton across the carbon-oxygen double bond.

(ii) Reactivity:

  • Aldehydes are usually more reactive than ketones in these reactions.
  • This is because ketones have bulkier groups around the carbonyl carbon, making it harder for the nucleophile to approach.
  • Also, aldehydes are more eager to react because they have fewer alkyl groups, which reduces the carbon's positive charge more effectively.

(iii) Examples of Reactions:

(a) Addition of Hydrogen Cyanide (HCN):

Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET 

  • Aldehydes and ketones react with hydrogen cyanide (HCN) to form cyanohydrins.
  • This reaction is slow with pure HCN, so it's usually catalyzed by a base.
  • Cyanide ions (CN-) formed act as strong nucleophiles, readily adding to carbonyl compounds to create cyanohydrins.
  • Cyanohydrins are useful intermediate compounds in synthesis.

(b) Addition of Sodium Hydrogensulphite:

Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET

  • Sodium hydrogensulphite adds to aldehydes and ketones, forming addition products.
  • The equilibrium usually favors the right side for aldehydes and the left side for ketones due to steric reasons.
  • These addition compounds dissolve in water and can be converted back to the original carbonyl compound by treating them with weak acids or alkalis.
  • This property makes them useful for separating and purifying aldehydes.

(c) Addition of Grignard Reagents:

Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET

(d) Addition of Alcohols:

Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET

  • Aldehydes react with monohydric alcohols in the presence of dry hydrogen chloride.
  • This forms an intermediate called a hemiacetal, which further reacts with more alcohol to produce a gem-dialkoxy compound known as an acetal.
  • Ketones react similarly with ethylene glycol, forming cyclic products called ethylene glycol ketals.
  • Dry hydrogen chloride makes the carbonyl carbon more electrophilic, facilitating the nucleophilic attack of the alcohol.
  • Acetals and ketals can be converted back to aldehydes and ketones respectively by hydrolysis with aqueous mineral acids.

(e) Addition of Ammonia and its Derivatives:

Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET 

  • Nucleophiles like ammonia and its derivatives (H2N-Z) add to the carbonyl group of aldehydes and ketones.
  • This reversible reaction, catalyzed by acid, favors product formation due to rapid dehydration of the intermediate to form imines (>C=N-Z).

2.Reduction

(i) Reduction to Alcohols:

  • Aldehydes turn into primary alcohols, while ketones become secondary alcohols.
  • This change happens when we use substances like sodium borohydride (NaBH4) or lithium aluminum hydride (LiAlH4), or by catalytic hydrogenation (refer to Unit 7, Class XII).

(ii) Reduction to Hydrocarbons:

  • Aldehydes and ketones can also be reduced to hydrocarbons.
  • This means their carbonyl groups are changed into CH2 groups.
  • We can do this by treating them with zinc amalgam and concentrated hydrochloric acid (known as Clemmensen reduction), or with hydrazine followed by heating with sodium or potassium hydroxide in a high-boiling solvent like ethylene glycol (known as Wolff-Kishner reduction).

3.Oxidation

Aldehydes vs. Ketones:

  • Aldehydes are easily oxidized to carboxylic acids using common oxidizing agents like nitric acid, potassium permanganate, and potassium dichromate.
  • Even milder agents like Tollens’ reagent and Fehlings’ reagent can oxidize aldehydes.
  • Ketones, on the other hand, require stronger oxidizing agents and higher temperatures for oxidation. Their oxidation breaks carbon-carbon bonds, producing a mix of carboxylic acids with fewer carbon atoms.

Tests to Distinguish Aldehydes and Ketones:

1.Tollens’ Test:

  • When warmed with ammoniacal silver nitrate solution (Tollens’ reagent), aldehydes produce a shiny silver mirror. This indicates oxidation to carboxylate anions in an alkaline environment.

2. Fehling’s Test:

  • Mixing Fehling solution A (copper sulfate) with Fehling solution B (alkaline sodium potassium tartrate) forms Fehling’s reagent.
  • Heating an aldehyde with Fehling’s reagent produces a reddish-brown precipitate, indicating oxidation to carboxylate anions. Aromatic aldehydes don't react with this test.

3. Oxidation of Methyl Ketones by Haloform Reaction:


  • Aldehydes and ketones with a methyl group linked to the carbonyl carbon (methyl ketones) are oxidized by sodium hypohalite.
  • This converts the methyl group into a haloform and reduces the carbonyl compound to a carboxylic acid with one fewer carbon atom.
  • This oxidation doesn't affect any carbon-carbon double bond present in the molecule.

4. Iodoform Reaction:

The iodoform reaction with sodium hypoiodite is also used to detect the presence of CH3CO or CH3CH(OH) groups, which produce CH3CO groups upon oxidation.

5. Reactions Due to α-Hydrogens

Acidity of α-Hydrogens:

  • The α-hydrogens in aldehydes and ketones are slightly acidic.
  • This is because the carbonyl group pulls electron density away from them, making them more prone to lose a proton.
  • Also, the resulting negative charge is stabilized by resonance.

(i). Aldol Condensation:

Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET


  • Aldehydes and ketones with α-hydrogens react in the presence of a weak alkali catalyst.
  • This reaction forms β-hydroxy aldehydes (aldol) or β-hydroxy ketones (ketol), depending on the starting compound.
  • It's called Aldol because it combines the words "aldehyde" and "alcohol," reflecting the groups present in the products.
  • The aldol or ketol can lose water to form α,β-unsaturated carbonyl compounds, which are aldol condensation products.

(ii). Cross Aldol Condensation:



  • When different aldehydes or ketones with α-hydrogens react together in aldol condensation, it's called cross aldol condensation.
  • If both reactants have α-hydrogens, they produce a mixture of four products.
  • For example, mixing ethanal and propanal in aldol condensation would yield four different products.

6. Other Reactions

i) Cannizzaro Reaction:

Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET

  • Aldehydes without α-hydrogen atoms undergo a special reaction called the Cannizzaro reaction.
  • When heated with concentrated alkali, these aldehydes undergo self-oxidation and reduction (disproportionation).
  • In this process, one aldehyde molecule gets reduced to an alcohol while another gets oxidized to a carboxylic acid salt.

(ii) Electrophilic Substitution Reaction:

Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET



  • Aromatic aldehydes and ketones can undergo a type of reaction called electrophilic substitution.
  • In this reaction, the carbonyl group in the aromatic ring acts as a deactivating and meta-directing group.
  • This means it influences the way new atoms or groups are added to the aromatic ring, typically directing them to the meta position.

Carboxylic Acids

(i) Physical properties of acids and acid derivatives


1. Boiling point :

Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET

Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET

Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET

The high boiling points of carboxylic acids is the result of formation of a stable hydrogen-bonded dimer.

 Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET

   Hydrogen bonded acid dimer

2. Solubility :

Carboxylic acids form hydrogen bonds with water and the lower molecular –weight carboxylic acids (upto 4 carbon atoms) are miscible with water.

Acid derivatives (esters, acid chlorides, anhydride, nitriles and amides) are soluble in organic solvents such as alcohols, ethers, chlorinated alkanes and aromatic hydrocarbons.

Methods of preparation of carboxylic acids

1. Synthesis of carboxylic acids by the carboxylation of Grignard's reagent:

Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET

2. Synthesis of Carboxylic acids by the hydrolysis of nitriles:

Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET
 Nitrile                                                                  carboxylic acid

(ii) Chemical Reactions

1. Acidic strength %

Acidity of carboxylic acids :-

Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET

Ex.

Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET

Ex. HCOOH > CH3COOH > CH3-CH2-COOH

Ex. Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET
 Ex. Relative acid strength is:-
RCOOH > HOH > ROH > HC = CH > NH3 > RH

Note:- Acidity of acids is compared by comparing stability of conjugate base.

2. Reaction involving removal of proton from –OH group.

1.Action with blue litmus : All carboxylic acids turn blue litmus red.
2.Reaction with metals :

2 CH3 COOH + 2Na  → 2CH3COONa + H2
                                      Sodium acetate

2CH3 COOH + Zn → (CH3COO)2 Zn + H2
                                   Zinc acetate

3.Reaction with alkalies:

CH3 COOH + NaOH → CH3 COONa + H2O


4.Reaction with carbonates and bicarbonates :

2CH3COOH + Na2CO3 → 2CH3 COONa + CO2 + H2O
CH3COOH + NaHCO→ CH3COONa + CO2 + H2O

Reaction of carboxylic acid with aqueous sodium carbonate solution produces brisk effervescence. However, most phenols do not produce effervescence. Therefore, the reaction may be used to distinguish between carboxylic acids and phenols.


5.Reaction with Grignard's reagent :

Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET

Note: A stronger acid displaces a weaker acid from salt of the weaker acid.

Ex. CH3COOH (Stronger acid) + CH3ONa → CH3 COONa + CH3 —OH (WeakerAcid)

Ex. CH3COOH (stronger acid) + NaHCO3 →  CHCOONa + HCO3 (Weaker acid) →  H2O + CO2


3. Reaction involving replacement of –OH group

Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET

(i) Formation of acid chlorides : 

Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET

Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET

(2)  Fisher Esterification:

Carboxylic acid react with alcohol to form esters through a condensation reaction known as esterification.

General Reaction : 

Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET

Specific Example:

Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET

Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET

Mechanism:
 Acid catalysed esterfication:

Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET
                                    Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET

If we follow the forward path in this mechanism, we have the mechanism for the acid catalysed esterification for an acid. If however, we follow the reverse reactions, we have the mechanism for the acid catalysed hydrolysis of an ester. Acid catalysed ester hydrolysis gives:

Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET

(3)  Formation of amides: 

Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET

(4)  Formation of acid anhydride: 

Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET

Decarboxylation reactions:

1. Soda-lime decarboxylation :

 General reaction:

Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET

Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET

2. Decarboxylation of  β- keto carboxylic acids :

Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET

Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET 

Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET- keto acid

3. Kolbe's electrolysis:

Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET
Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET
Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET

(II) R.  +  R→ R - R

If n is the number of carbon atoms in the salt of carboxylic acid, the alkane formed has 2(n-1) carbon atoms.

Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET

4. Hunsdiecker Reaction (Brome-decarboxylation):

R-COOAg + Br2  → R-Br + CO2 + AgBr

Mechanism:

Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET
Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET

5. HVZ Reaction (Halogenation of aliphatic acids and Substituted acids):

Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET

                              Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET

Carboxylic Acid Derivatives

Closely related to the carboxylic acids and to each other are a number of chemical families known as functional derivatives of carboxylic acids : acid chloride, anhydrides, amides, and esters. These derivatives are compounds in which the -OH of a carboxyl group has been replaced by–Cl, -OOCR, -NR2 or –OR.
Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET
They all contain the acyl group ,Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET

(A)  Acid halides:

Methods of preparation of Acyl halides:

(i) RCOOH + PCl5  → RCOCl + POCl3  + HCl

(ii) 3RCOOH + PCl3 → 3RCOCl + H3PO3

(iii) RCOOH + SOCl2 Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET RCOCl +SO2  + HCl

Ex.  
Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET

Ex.   
Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET

Chemical Reactions: 

1. Reaction with carboxylic acids:

Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET

2. Reaction with alcohols:

Acyl chlorides react with alcohols to form esters. The reaction is typically carried out in the presence of pyridine.
Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET

3. Hydrolysis:
Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET

 4. Reaction of acid halide with organometallic compounds:

(a) With Grignard's reagent-
Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET

(b) Reaction with Gilmann's reagent-
Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET 

 5. Reduction of acid halide:

(a)  Reduction LiAlH-
Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET           

(b) Reduction with H2/Pd/BaSO Rosenmund reduction-
Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET

Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET

 (B)   Acid amides

Methods of preparation of acids amides:

1. By reaction of esters with ammonia and amines.
Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET

Ammonia is more nucleophilic than water, making it possible to carry out this reaction using aqueous ammonia.
Ex.Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET

2. From acid halides:

RCOCl + 2NH3 → RCONH2 + NH4Cl

3. From anhydride:

(RCO)2O + 2NH3 → RCONH2  + RCOO NH4

4. From esters:

RCOOR + NH3 → RCONH2  + R’OH

 5. From ammonium salt of carboxylic acid:

RCOONH4 Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET RCONH2 + H2O

CH3 COONH4 Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET CH3CONH2

6. From cyanides:

Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET

7.
Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET

Chemical Reactions:

(1)  Hoffmann rearrangement:

General reaction-
Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET

(2) Hydrolysis of amides:
Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET

In acid, however, the amine is protonated, giving an ammonium ion, R2Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET
Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET

Summary of Reaction of Amide:

Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET

(C) Esters

Methods of Preparation:

(i) CH3 COOH + C2H5OH Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET CH3COOC2 H5  + H2O
Acetic acid

 C6H5COOH + CH3OH Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET C6H5 COOCH3  + H2

(ii) CH3 COCl + C2H5OH Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET CH3COOC2H5  + HCl

Alcohols react with acyl chlorides by nucleophilic acyl substitution to yield esters. These reactions are typically performed in the presence of a weak base such as pyridine.
Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET

Summary of reaction of esters :

Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET
(D) Acid anhydrides

Methods of Preparation of acid anhydrides:

1. From carboxylic acids

Ex.
CH3COOH + HOOCCH3  Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET CH3CO.O.COCH3  + H2O
Acetic acid                                        Acetic anhydride

Ex.
Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET

Ex.

Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET


2. From acid and acid halide

Ex.      CH3COOH + CH3COCl Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET CH3 CO.O.COCH3 + HCl

Ex.      CH3COCl + CH3COONa Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET CH3CO.O.COCH3  + NaCl

Chemical Reactions:

1. Reaction with aromatic compounds (Friedel crafts acylation)-

Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET


2. Reaction with alcohols-

Ex:



3.  Reaction with ammonia and amines-

Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET 


4. Hydrolysis-

 Acid anhydrides react with water to yield two carboxylic acids. Cyclic anhydrides yield dicarboxylic acids.

Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET

5. Heating Effects- 

 a. Heating effect on monocarboxylic acid
Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET

b. Heating effect on dicarboxylic acid
Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET

c. Heating effect on Hydroxy acids
Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET

1. Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEETHydroxy acid

Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET       

2. Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEETHyroxy acid
Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET
3. Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEETHydroxy acid
Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET

Since 4 or 8 membered rings are less stable therefore β-Hydroxy acids on heating produce α,β unsaturated carboxylic acid.

4. An α -Hyroxy acid
Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET

  5. Heating effect on esters
Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET 

This reaction follows syn elimination & Hoffman product is formed.

The document Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids | Chemistry Class 12 - NEET is a part of the NEET Course Chemistry Class 12.
All you need of NEET at this link: NEET
108 videos|286 docs|123 tests

Top Courses for NEET

FAQs on Physical & Chemical Properties of Aldehydes, Ketones & Carboxylic Acids - Chemistry Class 12 - NEET

1. What are the physical properties of aldehydes and ketones?
Ans. Aldehydes and ketones have distinct odors, with aldehydes typically having a fruity smell while ketones have a pleasant, sweet scent. They are both polar compounds, soluble in water due to hydrogen bonding, and have lower boiling points compared to alcohols of similar molecular weight.
2. What are some common chemical reactions of aldehydes and ketones?
Ans. Some common chemical reactions of aldehydes and ketones include oxidation reactions to form carboxylic acids, reduction reactions to form alcohols, nucleophilic addition reactions with nucleophiles like cyanide or Grignard reagents, and condensation reactions to form larger molecules like acetals and imines.
3. How are carboxylic acids prepared?
Ans. Carboxylic acids can be prepared by the oxidation of primary alcohols or aldehydes, hydrolysis of nitriles, oxidation of alkylbenzenes, or by the oxidation of alkyl groups in aromatic compounds. They can also be obtained through the decarboxylation of carboxylic acids or the hydrolysis of esters.
4. What is Fisher Esterification?
Ans. Fisher Esterification is a chemical reaction in which a carboxylic acid reacts with an alcohol in the presence of an acid catalyst to form an ester. This reaction is commonly used in the synthesis of esters for various industrial and laboratory applications.
5. What are some common decarboxylation reactions involving carboxylic acids?
Ans. Decarboxylation reactions involve the removal of a carboxyl group (COOH) from a molecule, resulting in the formation of a carbon dioxide molecule. Common examples include the decarboxylation of beta-keto acids, malonic acids, and aromatic acids, which are important in organic synthesis and the production of various compounds.
108 videos|286 docs|123 tests
Download as PDF
Explore Courses for NEET exam

Top Courses for NEET

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

shortcuts and tricks

,

past year papers

,

Previous Year Questions with Solutions

,

video lectures

,

study material

,

MCQs

,

pdf

,

Ketones & Carboxylic Acids | Chemistry Class 12 - NEET

,

Physical & Chemical Properties of Aldehydes

,

Extra Questions

,

Objective type Questions

,

Ketones & Carboxylic Acids | Chemistry Class 12 - NEET

,

practice quizzes

,

Important questions

,

Exam

,

ppt

,

Ketones & Carboxylic Acids | Chemistry Class 12 - NEET

,

Viva Questions

,

Summary

,

Physical & Chemical Properties of Aldehydes

,

Physical & Chemical Properties of Aldehydes

,

Sample Paper

,

Semester Notes

,

mock tests for examination

,

Free

;