Class 10 Exam  >  Class 10 Notes  >  Science Class 10  >  Refraction of Light & Total Internal Refraction

Refraction of Light & Total Internal Refraction | Science Class 10 PDF Download

What is Refraction of Light?

The bending of a ray of light as it passes from one medium to another is called refraction. 

It is due to a change in the velocity of light while travelling from one medium to another.

  • The maximum velocity of light is 3 x 108 m/sec in a vacuum or air.
  • The velocity is less in the denser medium.

Refraction of LightRefraction of Light


Why do stars twinkle?

Did you know that the twinkling effect of stars is due to atmospheric refraction? The starlight undergoes several refractions while reaching the Earth. This atmospheric refraction occurs in a medium of gradually changing refractive index.

Refraction of Light & Total Internal Refraction | Science Class 10


Causes of Refraction

  • Change of Speed Results in Change in Direction
    A light ray refracts whenever it travels at an angle into a medium of different refractive index. This change in speed results in a change in direction. As an example, consider air travelling into water. The speed of light decreases as it continues to travel at a different angle.
    Refraction of Light & Total Internal Refraction | Science Class 10The refraction of light in glass is shown in the figure above. When light travels from air into glass, the light slows down and changes direction slightly. When light travels from a less dense substance to a denser substance, the refracted light bends more towards the normal line. If the light wave approaches the boundary in a direction that is perpendicular to it, the light ray doesn’t refract in spite of the change in speed.


Laws of Refraction of Light

Laws of refraction state that:

  • The incident ray refracted ray, and the normal to the interface of two media at the point of incidence all lie on the same plane.
  • The ratio of the sine of the angle of incidence to the sine of the angle of refraction is constant. This is also known as Snell’s law of refraction.
    Refraction of Light & Total Internal Refraction | Science Class 10

Bending of Light Ray

According to Snell's law, μ sin i = μsin r

Refraction of Light & Total Internal Refraction | Science Class 10

(i) If light passes from rarer to the denser medium:
μ = μ and μ= μ
so that, 
Refraction of Light & Total Internal Refraction | Science Class 10  
⇒ ∠i > ∠r
In passing from rarer to a denser medium, the ray bends towards the normal.

Refraction of Light & Total Internal Refraction | Science Class 10

(ii) If light passes from denser to rarer medium μ1= μand μ= μ
Refraction of Light & Total Internal Refraction | Science Class 10  
⇒ ∠ i < ∠r
In passing from denser to rarer medium, the ray bends away from the normal.
Refractive index depends on nature and density of medium and colour of light refractive index is maximum for violet and minimum for the red light.


Question for Refraction of Light & Total Internal Refraction
Try yourself:When a ray of light enters from denser medium to rare medium it bends __________
View Solution


What is Refractive Index?

Refractive index, also called the index of refraction describes how fast light travels through the material.

Refractive Index is dimensionless. For a given material, the refractive index is the ratio between the speed of light in a vacuum (c) and the speed of light in the medium (v). If the refractive index for a medium is represented by n, then it is given by the following formula:
Refraction of Light & Total Internal Refraction | Science Class 10

Based on the refractive index of the medium, the light ray changes its direction, or it bends at the junction separating the two media. If the light ray travels from a medium to another of a higher refractive index, it bends towards the normal, else it bends away from the normal.

Refraction of Light & Total Internal Refraction | Science Class 10

When light passes from one medium to the other, the refractive index of medium 2 relative to 1 is written as 1μ and is defined as μ21 or 1μ2 or 1m 2
Refraction of Light & Total Internal Refraction | Science Class 10


Refraction of Light in Real Life

  • Mirage and looming are optical illusions that are a result of the refraction of light.
  • A swimming pool always looks shallower than it really is because the light coming from the bottom of the pool bends at the surface due to the refraction of light.
  • The formation of a rainbow is an example of refraction as the sun rays bend through the raindrops resulting in the rainbow.
  • When white light passes through a prism it is split into its component colours – red, orange, yellow, green, blue and violet due to the refraction of light.

Applications of Refraction of Light

Refraction has many applications in optics and technology. A few of the prominent applications are listed below:

  • A lens uses refraction to form an image of an object for various purposes, such as magnification.
  • Spectacles worn by people with defective vision use the principle of refraction.
  • Refraction is used in peepholes of house doors, cameras, movie projectors and telescopes.

Question for Refraction of Light & Total Internal Refraction
Try yourself:Which of these devices takes advantage of refraction?
View Solution


What is Total Internal Reflection (TIR)?


The phenomenon which occurs when the light rays travel from a more optically denser medium to a less optically denser medium.

  • When light ray travel from denser to rarer medium it bends away from the normal if the angle of incidence is increased angle of refraction will also increase. 
  • At a particular value of angle of incidence the refracted ray subtends 90º angle with the normal, this angle of incidence is known as critical angle (θC). 
  • If the angle of incidence further increases, the ray comes back in the same medium this phenomenon is known as total internal reflection.

Formula of Total Internal Reflection

Refraction of Light & Total Internal Refraction | Science Class 10


Conditions of Total Internal Reflection


Following are the two conditions of total internal reflection:

  • The light ray moves from a more dense medium to a less dense medium.
  • The angle of incidence must be greater than the critical angle.

Some Illustrations of Total Internal Reflection


  • Sparkling of diamond: The sparkling of diamond is due to total internal reflection inside it. As refractive index for a diamond is 2.5, so θC = 24. Now the cutting of diamond is such that i > θC. So TIR will take place again and again inside it. The light which beams out from a few places in some specific directions makes it sparkle.
  • Optical Fibre: In it, light through multiple total internal reflections is propagated along the axis of a glass fibre of radius of few microns in which the index of refraction of the core is greater than that of surroundings.
    Optical Fibre
    Optical Fibre
  • Mirage and looming: It is an optical illusion that is responsible for the appearance of the water layer at short distances in a desert or on the road. Mirage is an example of total internal reflection which occurs due to atmospheric refraction.

MirageMirage

Golden Key Points


  • A diver in water at a depth d sees the world outside through a horizontal circle of radius. 
  • r = d tanθC
  • For total internal reflection to take place light must be propagating from denser to rarer medium.
  • In the case of total internal reflection, as all (i.e. 100%) incident light is reflected back into the same medium there is no loss of intensity while in the case of reflection from a mirror or refraction from lenses there is some drop in intensity as all light can never be reflected or refracted. This is why images formed by TIR are much brighter than those formed by mirrors or lenses.

Frequently Asked Questions

Q.1: What do you mean by the term refraction?

Ans: Refraction is the bending of light at the surface of separation, which takes when it passes from one optical medium to another optical medium with different optical densities.


Q.2: Does reflection also take place with the refraction?

Ans: Yes, reflection also takes place with the refraction.


Q.3: For which colour of white light, is the refractive index of glass the most?

Ans: Violet colour of white light has highest refractive index.

The document Refraction of Light & Total Internal Refraction | Science Class 10 is a part of the Class 10 Course Science Class 10.
All you need of Class 10 at this link: Class 10
85 videos|437 docs|75 tests

Top Courses for Class 10

FAQs on Refraction of Light & Total Internal Refraction - Science Class 10

1. What is the definition of refraction of light?
Ans. Refraction of light refers to the bending of light as it passes from one medium to another medium with a different refractive index. This bending occurs due to the change in the speed of light when it enters a new medium.
2. What are the causes of refraction of light?
Ans. The main cause of refraction of light is the change in the speed of light when it passes from one medium to another. The speed of light is different in different mediums due to variations in their optical density. This change in speed causes the light rays to bend or deviate from their original path.
3. What are the laws of refraction of light?
Ans. The laws of refraction of light are as follows: 1. The incident ray, the refracted ray, and the normal at the point of incidence all lie on the same plane. 2. The ratio of the sine of the angle of incidence to the sine of the angle of refraction is constant for a given pair of media. This ratio is known as the refractive index.
4. What is the refractive index?
Ans. The refractive index is a measure of how much a medium can bend light. It is defined as the ratio of the speed of light in vacuum to the speed of light in the medium. The refractive index is denoted by the symbol 'n' and can be calculated using the formula: Refractive Index (n) = Speed of Light in Vacuum / Speed of Light in Medium
5. What are some real-life applications of refraction of light?
Ans. Refraction of light has several practical applications in everyday life. Some of them include: 1. Lenses used in glasses, cameras, and telescopes utilize refraction to focus light and form images. 2. The bending of light in a prism allows us to see the various colors of a rainbow. 3. Refraction in water causes objects to appear closer or distorted, which is important for activities like fishing or diving. 4. Optical fibers use total internal reflection to transmit light signals over long distances, enabling high-speed internet and communication.
85 videos|437 docs|75 tests
Download as PDF
Explore Courses for Class 10 exam

Top Courses for Class 10

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

study material

,

Refraction of Light & Total Internal Refraction | Science Class 10

,

ppt

,

Previous Year Questions with Solutions

,

Important questions

,

shortcuts and tricks

,

Objective type Questions

,

Free

,

pdf

,

Summary

,

Viva Questions

,

Sample Paper

,

Refraction of Light & Total Internal Refraction | Science Class 10

,

MCQs

,

mock tests for examination

,

Exam

,

past year papers

,

Semester Notes

,

practice quizzes

,

Refraction of Light & Total Internal Refraction | Science Class 10

,

video lectures

,

Extra Questions

;