UPSC Exam  >  UPSC Notes  >  Mathematics Optional Notes for UPSC  >  Scalar and Vector Herts

Scalar and Vector Herts | Mathematics Optional Notes for UPSC PDF Download

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


Edurev123 
Vector Analysis 
1. Scalar and Vector Herts 
1.1 Prove that the vectors ???? =?? ?? +?? -?? ?? ,???? 
=-?? +?? ?? +?? ?? ,??? =?? ?? -?? ?? -?? ?? can 
form the sides of a triangle. Find the lengths of the medians of the triangle. 
(2016 : 10 Marks) 
Solution: 
Here, we find that 
??? 
+??  =(-?? +3?? +4?? )+(4?? -2?? -6?? )
 =3?? +?? -2?? =?? 
??.?? .,                                                ??? 
+??  =?? 
 
                                                    
And also we notice that these three vectors are not collinear (components are not 
proportional). Hence, these form the sides ofa triangle. Let ???? ,???? and ???? be medians. 
By triangle law of vector addition : 
Page 2


Edurev123 
Vector Analysis 
1. Scalar and Vector Herts 
1.1 Prove that the vectors ???? =?? ?? +?? -?? ?? ,???? 
=-?? +?? ?? +?? ?? ,??? =?? ?? -?? ?? -?? ?? can 
form the sides of a triangle. Find the lengths of the medians of the triangle. 
(2016 : 10 Marks) 
Solution: 
Here, we find that 
??? 
+??  =(-?? +3?? +4?? )+(4?? -2?? -6?? )
 =3?? +?? -2?? =?? 
??.?? .,                                                ??? 
+??  =?? 
 
                                                    
And also we notice that these three vectors are not collinear (components are not 
proportional). Hence, these form the sides ofa triangle. Let ???? ,???? and ???? be medians. 
By triangle law of vector addition : 
????
????? 
=????
????? 
+????
????? 
=?? 
-
?? 
2
=
1
2
(5?? -5?? -14?? )
|?? ?? |
??????? 
=
v
1
4
(25+25+196)=
v
246
4
=
v246
2
????
????? 
=????
????? 
+????
????? 
=-(?? 
+
??? 
2
)=-
1
2
(7??ˆ-??ˆ-8??ˆ
)
 |???? |
??????? 
=
1
2
v49+1+64=
v114
2
????
????? 
=????
????? 
+????
????? 
=??? 
+
?? 
2
=
1
2
(2?? +4?? +2?? )
 |????
????? 
|=|?? +2?? +?? |=v1+4+1=v6
 
  
Page 3


Edurev123 
Vector Analysis 
1. Scalar and Vector Herts 
1.1 Prove that the vectors ???? =?? ?? +?? -?? ?? ,???? 
=-?? +?? ?? +?? ?? ,??? =?? ?? -?? ?? -?? ?? can 
form the sides of a triangle. Find the lengths of the medians of the triangle. 
(2016 : 10 Marks) 
Solution: 
Here, we find that 
??? 
+??  =(-?? +3?? +4?? )+(4?? -2?? -6?? )
 =3?? +?? -2?? =?? 
??.?? .,                                                ??? 
+??  =?? 
 
                                                    
And also we notice that these three vectors are not collinear (components are not 
proportional). Hence, these form the sides ofa triangle. Let ???? ,???? and ???? be medians. 
By triangle law of vector addition : 
????
????? 
=????
????? 
+????
????? 
=?? 
-
?? 
2
=
1
2
(5?? -5?? -14?? )
|?? ?? |
??????? 
=
v
1
4
(25+25+196)=
v
246
4
=
v246
2
????
????? 
=????
????? 
+????
????? 
=-(?? 
+
??? 
2
)=-
1
2
(7??ˆ-??ˆ-8??ˆ
)
 |???? |
??????? 
=
1
2
v49+1+64=
v114
2
????
????? 
=????
????? 
+????
????? 
=??? 
+
?? 
2
=
1
2
(2?? +4?? +2?? )
 |????
????? 
|=|?? +2?? +?? |=v1+4+1=v6
 
  
Edurev123 
2. Differentiation of a Vector Field of a 
Scalar Variable 
2.1 For two vectors ????  and ???? 
 given respectively by 
and 
???? =?? ?? ?? ??ˆ+?? ??ˆ-?? ?? ??ˆ
???? 
=?????? ?? ??ˆ-?????? ?? ??ˆ
 
Determine: (i) 
?? ????
(???? ·???? 
) and 
?? ????
(???? ×???? 
) 
(2009: 10 marks) 
Solution: 
??  =5?? 2
??ˆ+?? ??ˆ-?? 3
??ˆ
??? 
 =sin 5?? ??ˆ-cos ?? ??ˆ
?? ·??? 
 =5?? 2
sin 5?? -?? cos ?? (???ˆ·??ˆ=1 etc., ??ˆ·??ˆ=??ˆ·??ˆ
=??ˆ
·??ˆ=0)
?                        
?? ????
(?? ·??? 
) =
?? ????
(5?? 2
sin 5?? -?? cos ?? )
 =5(2?? sin 5?? +?? 2
·5cos 5?? )-(1·cos ?? -?? sin ?? )
 =10?? sin 5?? +25?? 2
cos 5?? -cos ?? +?? sin ?? 
?? ×??? 
 =|
??ˆ ??ˆ ??ˆ
5?? 2
?? -?? 3
sin 5?? -cos ?? 0
|
=??ˆ(0-?? 3
cos ?? )+??ˆ(-?? 3
sin 5?? -0)+??ˆ
(-5?? 2
cos ?? -??ˆ
sin 5?? )
= -?? 3
cos ?? ??ˆ-?? 3
sin 5?? ??ˆ-(5?? 2
cos ?? +?? sin 5?? )??ˆ
?                    
?? ????
(?? ×??? 
)=(-3?? 2
cos ?? +?? 3
sin ?? )??ˆ-(3?? 2
sin 5?? +5?? 3
cos ?? )??ˆ-
(10?? cos ?? -5?? 2
sin ?? +?? cos 5?? +1·sin 5?? )??ˆ
 
2.2 If 
???? 
=?? ?? ???? ?? -?? ?? ?? ?? ?? +?? ?? ?? ???? 
???? 
=?? ?? ?? +?? ?? -?? ?? ???? 
 
find the value of 
?? ?? ?? ?? ?? ?? (???? 
×???? 
) at (?? ,?? ,-?? ) . 
(2012 : 12 Marks) 
Solution: 
Page 4


Edurev123 
Vector Analysis 
1. Scalar and Vector Herts 
1.1 Prove that the vectors ???? =?? ?? +?? -?? ?? ,???? 
=-?? +?? ?? +?? ?? ,??? =?? ?? -?? ?? -?? ?? can 
form the sides of a triangle. Find the lengths of the medians of the triangle. 
(2016 : 10 Marks) 
Solution: 
Here, we find that 
??? 
+??  =(-?? +3?? +4?? )+(4?? -2?? -6?? )
 =3?? +?? -2?? =?? 
??.?? .,                                                ??? 
+??  =?? 
 
                                                    
And also we notice that these three vectors are not collinear (components are not 
proportional). Hence, these form the sides ofa triangle. Let ???? ,???? and ???? be medians. 
By triangle law of vector addition : 
????
????? 
=????
????? 
+????
????? 
=?? 
-
?? 
2
=
1
2
(5?? -5?? -14?? )
|?? ?? |
??????? 
=
v
1
4
(25+25+196)=
v
246
4
=
v246
2
????
????? 
=????
????? 
+????
????? 
=-(?? 
+
??? 
2
)=-
1
2
(7??ˆ-??ˆ-8??ˆ
)
 |???? |
??????? 
=
1
2
v49+1+64=
v114
2
????
????? 
=????
????? 
+????
????? 
=??? 
+
?? 
2
=
1
2
(2?? +4?? +2?? )
 |????
????? 
|=|?? +2?? +?? |=v1+4+1=v6
 
  
Edurev123 
2. Differentiation of a Vector Field of a 
Scalar Variable 
2.1 For two vectors ????  and ???? 
 given respectively by 
and 
???? =?? ?? ?? ??ˆ+?? ??ˆ-?? ?? ??ˆ
???? 
=?????? ?? ??ˆ-?????? ?? ??ˆ
 
Determine: (i) 
?? ????
(???? ·???? 
) and 
?? ????
(???? ×???? 
) 
(2009: 10 marks) 
Solution: 
??  =5?? 2
??ˆ+?? ??ˆ-?? 3
??ˆ
??? 
 =sin 5?? ??ˆ-cos ?? ??ˆ
?? ·??? 
 =5?? 2
sin 5?? -?? cos ?? (???ˆ·??ˆ=1 etc., ??ˆ·??ˆ=??ˆ·??ˆ
=??ˆ
·??ˆ=0)
?                        
?? ????
(?? ·??? 
) =
?? ????
(5?? 2
sin 5?? -?? cos ?? )
 =5(2?? sin 5?? +?? 2
·5cos 5?? )-(1·cos ?? -?? sin ?? )
 =10?? sin 5?? +25?? 2
cos 5?? -cos ?? +?? sin ?? 
?? ×??? 
 =|
??ˆ ??ˆ ??ˆ
5?? 2
?? -?? 3
sin 5?? -cos ?? 0
|
=??ˆ(0-?? 3
cos ?? )+??ˆ(-?? 3
sin 5?? -0)+??ˆ
(-5?? 2
cos ?? -??ˆ
sin 5?? )
= -?? 3
cos ?? ??ˆ-?? 3
sin 5?? ??ˆ-(5?? 2
cos ?? +?? sin 5?? )??ˆ
?                    
?? ????
(?? ×??? 
)=(-3?? 2
cos ?? +?? 3
sin ?? )??ˆ-(3?? 2
sin 5?? +5?? 3
cos ?? )??ˆ-
(10?? cos ?? -5?? 2
sin ?? +?? cos 5?? +1·sin 5?? )??ˆ
 
2.2 If 
???? 
=?? ?? ???? ?? -?? ?? ?? ?? ?? +?? ?? ?? ???? 
???? 
=?? ?? ?? +?? ?? -?? ?? ???? 
 
find the value of 
?? ?? ?? ?? ?? ?? (???? 
×???? 
) at (?? ,?? ,-?? ) . 
(2012 : 12 Marks) 
Solution: 
Given: 
                    ?? ???????????????????????? 
=?? 2
???? ?? -2?? ?? 3
?? +?? ?? 2
??? 
                   ?? ??????????????????????? 
=2?? ?? +?? ?? -?? 2
??? 
 ?      ?? 
×??? 
=|
?? ?? ??? 
?? 2
???? -2?? ?? 3
?? ?? 2
2?? ?? -?? 2
|
                       =?? (2?? 3
?? 3
-???? ?? 2
)+?? (2?? ?? 3
+?? 4
???? )+??? 
(?? 2
?? 2
?? +4?? ?? 4
)
 
?
??? (?? 
×??? 
)=?? (-?? ?? 2
)+?? (?? 4
?? )+??? 
(2?? 2
???? )
 ?           
?
2
??? ??? (?? 
×??? 
)=?? (-?? 2
)+?? (4?? 3
?? )+??? 
(4?????? )
 ? At (1,0,-2) ? 
                   
?
2
??? ??? (?? 
×??? 
)=-4?? -8?? 
 
2.3 The position vector of a moving point at time ?? is, ?? 
=(?????? ?? )?? +(?????? ?? ?? )?? +
(?? ?? +?? ?? )?? . Find the components of acceleration ????  in the directions parallel to the 
velocity vector ????  and perpendicular to the plane of ???  and ????  at time ?? =?? . 
(2017 : 10 Marks) 
Solution: 
?? =(sin ?? )?? +(cos 2?? )?? +(?? 2
+2?? )?? (??)
?? =
?? ?? 
????
=(cos ?? )?? -2sin 2???? +(2?? +2)?? (???? )
?? =
?? 2
?? 
?? ?? 2
=(-sin ?? )?? -4cos 2???? +2?? (?????? )
 
At ?? =0, 
?? =?? ,?? =?? +2?? ,?? =-4?? ÷2?? 
Component of ??  in direction of ??  
?? 
?? =
?? ·?? 
|?? |
·
?? 
|?? |
=
+4
(1+4)
?? =
4
5
(?? +2?? ) 
Component of ??  in the direction of vector perpendicular to the plane of ??  and ?? . 
Let ??  be the vector perpendicular to ??  and ??  
??  =?? ×?? =2??ˆ-??ˆ
,|?? |
2
=5
?? 
?? =
?? ·?? 
|??? 
|
·
??? 
|?? |
=
-2
5
(2?? -?? )
 
Read More
387 videos|203 docs
Related Searches

Previous Year Questions with Solutions

,

Scalar and Vector Herts | Mathematics Optional Notes for UPSC

,

Sample Paper

,

Objective type Questions

,

video lectures

,

mock tests for examination

,

pdf

,

Exam

,

ppt

,

study material

,

shortcuts and tricks

,

Extra Questions

,

past year papers

,

Scalar and Vector Herts | Mathematics Optional Notes for UPSC

,

Viva Questions

,

Scalar and Vector Herts | Mathematics Optional Notes for UPSC

,

Summary

,

Semester Notes

,

MCQs

,

practice quizzes

,

Free

,

Important questions

;