Download, print and study this document offline |
Page 1 Edurev123 6. Second Order Linear Equations with Variable Coefficient 6.1 Solve the ordinary differential equation ?? (?? -?? )?? ' -(?? ?? -?? )?? +?? ?? =?? ?? (?? ?? -?? ) (2012: 20 marks) Solution: The given equation is : ?? (?? -1)?? ' -(2?? -1)?? +2?? =?? 2 (2?? -3) ? ?? '' - (2?? -1) ?? (?? -1) ?? ' + 2?? ?? (?? -1) = ?? 2 (2?? -3) ?? (?? -1) (??) which is of the form of ?? '' +???? +???? =?? ?? = -(2?? -1) ?? (?? -1) ,?? = 2 ?? ' (?? -1) 2+2???? +?? ?? 2 =2+2?? · [-(2?? -1)] ?? (?? -1) +?? 2 · 2 ?? (?? -1) =0 ?4=?? 2 is a part of the complementary function. Also ?? = Second part of ?? .?? . =?? ? ?? -? ?????? ?? 2 ???? =?? 2 ? 1 ?? 4 ?? ? 2?? -1 ?? (?? -1) ???? ???? =?? 2 ? 1 ?? 4 ·?? ? ( 1 ?? + 1 ?? -1 )???? ?? ?? =?? 2 ? 1 ?? 4 ·(?? 2 -?? )???? =?? 2 ? ( 1 ?? 2 - 1 ?? 3 )???? =?? 2 ( ?? -1 -1 - ?? -2 -2 ) =-?? +2 So, the complementary function is ?? ?? =?? 1 +?? 2 ?? +?? 3 ?? ?? where ?? 1 ,?? 2 and ?? 3 are arbitrary constants. Particular integral is Page 2 Edurev123 6. Second Order Linear Equations with Variable Coefficient 6.1 Solve the ordinary differential equation ?? (?? -?? )?? ' -(?? ?? -?? )?? +?? ?? =?? ?? (?? ?? -?? ) (2012: 20 marks) Solution: The given equation is : ?? (?? -1)?? ' -(2?? -1)?? +2?? =?? 2 (2?? -3) ? ?? '' - (2?? -1) ?? (?? -1) ?? ' + 2?? ?? (?? -1) = ?? 2 (2?? -3) ?? (?? -1) (??) which is of the form of ?? '' +???? +???? =?? ?? = -(2?? -1) ?? (?? -1) ,?? = 2 ?? ' (?? -1) 2+2???? +?? ?? 2 =2+2?? · [-(2?? -1)] ?? (?? -1) +?? 2 · 2 ?? (?? -1) =0 ?4=?? 2 is a part of the complementary function. Also ?? = Second part of ?? .?? . =?? ? ?? -? ?????? ?? 2 ???? =?? 2 ? 1 ?? 4 ?? ? 2?? -1 ?? (?? -1) ???? ???? =?? 2 ? 1 ?? 4 ·?? ? ( 1 ?? + 1 ?? -1 )???? ?? ?? =?? 2 ? 1 ?? 4 ·(?? 2 -?? )???? =?? 2 ? ( 1 ?? 2 - 1 ?? 3 )???? =?? 2 ( ?? -1 -1 - ?? -2 -2 ) =-?? +2 So, the complementary function is ?? ?? =?? 1 +?? 2 ?? +?? 3 ?? ?? where ?? 1 ,?? 2 and ?? 3 are arbitrary constants. Particular integral is ?? ?? = 1 (?? 3 -?? 2 ) (12?? 2 +6?? ) = -1 ?? 2 (1-?? ) (12?? 2 +6?? ) = -1 ?? 2 (1-?? ) -1 (12?? 2 +6?? ) = -1 ?? 2 (1+?? +?? 2 +?.)(12?? 2 +6?? ) = -1 ?? 2 (12?? 2 +30?? +30) = -1 ?? (4?? 3 +15?? 2 +30?? ) =-(?? 4 +5?? 3 +15?? 2 ) ? The required general solution is : ?? =?? ?? +?? ?? =?? 1 +?? 2 ?? +?? 3 ?? ?? -(?? 4 +5?? 3 +15?? 2 ) Particular integral, P.I. =?? ? ?? -??????? ?? 2 (??? 4 ?? -??????? ???? )???? =?? 2 ? (?? 2 -?? ) ?? 4 (? ?? (2?? -3) (?? -1) ·?? (?? -1)???? )???? [??? -? ?????? =?? (1) 1] =?? 2 ? ?? 2 -?? ?? 4 [? ?? 2 (2?? -3)???? ]???? =?? 2 ? ?? -1 ?? 3 [? (2?? 3 -3?? 2 )???? ]???? = ?? 2 2 ? (?? -1)(?? -2)???? = ?? 2 2 ? (?? 2 -3?? -2)???? = ?? 2 2 ( ?? 3 3 - 3?? 2 2 +2?? ) ? Complete solution of (i) is ?? =?? 1 ?? 2 +?? 2 (2-?? )+ ?? 2 2 ( ?? 3 3 - 3?? 2 2 +2?? ) 6.2 Find the general solution of the equation: ?? ?? ?? ?? ?? ?? ?? ?? +?? ???? ???? +?? =???? ?? ?????? (???? ?? ) (2013: 15 Marks) Page 3 Edurev123 6. Second Order Linear Equations with Variable Coefficient 6.1 Solve the ordinary differential equation ?? (?? -?? )?? ' -(?? ?? -?? )?? +?? ?? =?? ?? (?? ?? -?? ) (2012: 20 marks) Solution: The given equation is : ?? (?? -1)?? ' -(2?? -1)?? +2?? =?? 2 (2?? -3) ? ?? '' - (2?? -1) ?? (?? -1) ?? ' + 2?? ?? (?? -1) = ?? 2 (2?? -3) ?? (?? -1) (??) which is of the form of ?? '' +???? +???? =?? ?? = -(2?? -1) ?? (?? -1) ,?? = 2 ?? ' (?? -1) 2+2???? +?? ?? 2 =2+2?? · [-(2?? -1)] ?? (?? -1) +?? 2 · 2 ?? (?? -1) =0 ?4=?? 2 is a part of the complementary function. Also ?? = Second part of ?? .?? . =?? ? ?? -? ?????? ?? 2 ???? =?? 2 ? 1 ?? 4 ?? ? 2?? -1 ?? (?? -1) ???? ???? =?? 2 ? 1 ?? 4 ·?? ? ( 1 ?? + 1 ?? -1 )???? ?? ?? =?? 2 ? 1 ?? 4 ·(?? 2 -?? )???? =?? 2 ? ( 1 ?? 2 - 1 ?? 3 )???? =?? 2 ( ?? -1 -1 - ?? -2 -2 ) =-?? +2 So, the complementary function is ?? ?? =?? 1 +?? 2 ?? +?? 3 ?? ?? where ?? 1 ,?? 2 and ?? 3 are arbitrary constants. Particular integral is ?? ?? = 1 (?? 3 -?? 2 ) (12?? 2 +6?? ) = -1 ?? 2 (1-?? ) (12?? 2 +6?? ) = -1 ?? 2 (1-?? ) -1 (12?? 2 +6?? ) = -1 ?? 2 (1+?? +?? 2 +?.)(12?? 2 +6?? ) = -1 ?? 2 (12?? 2 +30?? +30) = -1 ?? (4?? 3 +15?? 2 +30?? ) =-(?? 4 +5?? 3 +15?? 2 ) ? The required general solution is : ?? =?? ?? +?? ?? =?? 1 +?? 2 ?? +?? 3 ?? ?? -(?? 4 +5?? 3 +15?? 2 ) Particular integral, P.I. =?? ? ?? -??????? ?? 2 (??? 4 ?? -??????? ???? )???? =?? 2 ? (?? 2 -?? ) ?? 4 (? ?? (2?? -3) (?? -1) ·?? (?? -1)???? )???? [??? -? ?????? =?? (1) 1] =?? 2 ? ?? 2 -?? ?? 4 [? ?? 2 (2?? -3)???? ]???? =?? 2 ? ?? -1 ?? 3 [? (2?? 3 -3?? 2 )???? ]???? = ?? 2 2 ? (?? -1)(?? -2)???? = ?? 2 2 ? (?? 2 -3?? -2)???? = ?? 2 2 ( ?? 3 3 - 3?? 2 2 +2?? ) ? Complete solution of (i) is ?? =?? 1 ?? 2 +?? 2 (2-?? )+ ?? 2 2 ( ?? 3 3 - 3?? 2 2 +2?? ) 6.2 Find the general solution of the equation: ?? ?? ?? ?? ?? ?? ?? ?? +?? ???? ???? +?? =???? ?? ?????? (???? ?? ) (2013: 15 Marks) Solution: We have (?? 2 ?? 2 +???? +1)?? =ln ?? sin (ln ?? ) This is in the Cauchy-Euler form. Let ?? =ln ?? ? ???? ???? = 1 ?? ??? ?? ???? = ?? ???? ????? =?? 1 where ?? ???? =?? 1 Similarly, ?? 2 ?? 2 =?? 1 (?? 1 -1) ? (?? 1 (?? 1 -1)+?? 1 +1)?? =?? sin ?? ? (?? 1 2 +1)?? =?? sin ?? Auxiliary equation is ?? 2 +1=0 ? Comfiementary function (C.F.) ?? =±?? =?? 1 cos ?? +?? 2 sin ?? P.I. = 1 (?? 2 +1) ?? sin ?? = Real part 1 ?? 2 +1 ?? ?? ???? Now, 1 ?? 2 +1 ?? ?? ???? =?? ???? 1 (?? +??) 2 +1 ?? =?? ???? 1 ?? 2 +2???? ?? = ?? ???? 2?? 1 ?? (1+ ?? 2?? ) -1 ?? = ?? ???? 2?? · 1 ?? (1- ?? 2?? + ?? 2 4?? 2 )?? Page 4 Edurev123 6. Second Order Linear Equations with Variable Coefficient 6.1 Solve the ordinary differential equation ?? (?? -?? )?? ' -(?? ?? -?? )?? +?? ?? =?? ?? (?? ?? -?? ) (2012: 20 marks) Solution: The given equation is : ?? (?? -1)?? ' -(2?? -1)?? +2?? =?? 2 (2?? -3) ? ?? '' - (2?? -1) ?? (?? -1) ?? ' + 2?? ?? (?? -1) = ?? 2 (2?? -3) ?? (?? -1) (??) which is of the form of ?? '' +???? +???? =?? ?? = -(2?? -1) ?? (?? -1) ,?? = 2 ?? ' (?? -1) 2+2???? +?? ?? 2 =2+2?? · [-(2?? -1)] ?? (?? -1) +?? 2 · 2 ?? (?? -1) =0 ?4=?? 2 is a part of the complementary function. Also ?? = Second part of ?? .?? . =?? ? ?? -? ?????? ?? 2 ???? =?? 2 ? 1 ?? 4 ?? ? 2?? -1 ?? (?? -1) ???? ???? =?? 2 ? 1 ?? 4 ·?? ? ( 1 ?? + 1 ?? -1 )???? ?? ?? =?? 2 ? 1 ?? 4 ·(?? 2 -?? )???? =?? 2 ? ( 1 ?? 2 - 1 ?? 3 )???? =?? 2 ( ?? -1 -1 - ?? -2 -2 ) =-?? +2 So, the complementary function is ?? ?? =?? 1 +?? 2 ?? +?? 3 ?? ?? where ?? 1 ,?? 2 and ?? 3 are arbitrary constants. Particular integral is ?? ?? = 1 (?? 3 -?? 2 ) (12?? 2 +6?? ) = -1 ?? 2 (1-?? ) (12?? 2 +6?? ) = -1 ?? 2 (1-?? ) -1 (12?? 2 +6?? ) = -1 ?? 2 (1+?? +?? 2 +?.)(12?? 2 +6?? ) = -1 ?? 2 (12?? 2 +30?? +30) = -1 ?? (4?? 3 +15?? 2 +30?? ) =-(?? 4 +5?? 3 +15?? 2 ) ? The required general solution is : ?? =?? ?? +?? ?? =?? 1 +?? 2 ?? +?? 3 ?? ?? -(?? 4 +5?? 3 +15?? 2 ) Particular integral, P.I. =?? ? ?? -??????? ?? 2 (??? 4 ?? -??????? ???? )???? =?? 2 ? (?? 2 -?? ) ?? 4 (? ?? (2?? -3) (?? -1) ·?? (?? -1)???? )???? [??? -? ?????? =?? (1) 1] =?? 2 ? ?? 2 -?? ?? 4 [? ?? 2 (2?? -3)???? ]???? =?? 2 ? ?? -1 ?? 3 [? (2?? 3 -3?? 2 )???? ]???? = ?? 2 2 ? (?? -1)(?? -2)???? = ?? 2 2 ? (?? 2 -3?? -2)???? = ?? 2 2 ( ?? 3 3 - 3?? 2 2 +2?? ) ? Complete solution of (i) is ?? =?? 1 ?? 2 +?? 2 (2-?? )+ ?? 2 2 ( ?? 3 3 - 3?? 2 2 +2?? ) 6.2 Find the general solution of the equation: ?? ?? ?? ?? ?? ?? ?? ?? +?? ???? ???? +?? =???? ?? ?????? (???? ?? ) (2013: 15 Marks) Solution: We have (?? 2 ?? 2 +???? +1)?? =ln ?? sin (ln ?? ) This is in the Cauchy-Euler form. Let ?? =ln ?? ? ???? ???? = 1 ?? ??? ?? ???? = ?? ???? ????? =?? 1 where ?? ???? =?? 1 Similarly, ?? 2 ?? 2 =?? 1 (?? 1 -1) ? (?? 1 (?? 1 -1)+?? 1 +1)?? =?? sin ?? ? (?? 1 2 +1)?? =?? sin ?? Auxiliary equation is ?? 2 +1=0 ? Comfiementary function (C.F.) ?? =±?? =?? 1 cos ?? +?? 2 sin ?? P.I. = 1 (?? 2 +1) ?? sin ?? = Real part 1 ?? 2 +1 ?? ?? ???? Now, 1 ?? 2 +1 ?? ?? ???? =?? ???? 1 (?? +??) 2 +1 ?? =?? ???? 1 ?? 2 +2???? ?? = ?? ???? 2?? 1 ?? (1+ ?? 2?? ) -1 ?? = ?? ???? 2?? · 1 ?? (1- ?? 2?? + ?? 2 4?? 2 )?? = ?? ???? 2?? 1 ?? (?? - 1 2?? )= ?? ???? 2?? ( ?? 2 2 - ?? 2?? ) = ?? ???? 4 (-???? 2 +?? ) ? R.P. of 1 ?? 2 +1 ?? ?? ???? = R.P. of { ?? ???? 4 (-???? 2 +?? )} = 1 4 (?? cos ?? +?? 2 sin ?? ) ? ???? = 1 4 (?? cos ?? +?? 2 sin ?? ) ?? =?? 1 cos ?? +?? 2 sin ?? + ?? 4 cos ?? + ?? 2 4 sin ?? =(?? 1 + ln ?? 4 )cos (ln ?? )+{?? 2 + (ln ?? ) 2 4 }sin (ln ?? ) 6.3 Solve the differential equation: ?? ?? ?? ?? ?? ?? ?? ?? +?? ?? ?? ?? ?? ?? ?? ?? ?? +?? ???? ???? +?? ?? =???? ?????? (?????? ?? ?? ) (2014 : 20 Marks) Solution: Given that (?? 3 ?? 3 +3?? 2 ?? 2 +???? +8)?? =65cos log ?? (??) ?????? ?? =?? ?? ? log ?? =?? ?????? ?????? ?? 1 = ?? ???? Then 2?? =?? 1 and ?? 2 ?? 2 =?? 1 (?? 1 -1) ?? 3 =?? 1 (?? 1 -1)(?? 1 -2) ? (i), we have (?? 1 (?? 1 -1)(?? 1 -2)+3(?? 1 )(?? 1 -1)+?? 1 +8)?? =65cos ?? ? (?? 1 3 +8)?? =65cos?? (???? ) Auxiliary equation of (ii) is Page 5 Edurev123 6. Second Order Linear Equations with Variable Coefficient 6.1 Solve the ordinary differential equation ?? (?? -?? )?? ' -(?? ?? -?? )?? +?? ?? =?? ?? (?? ?? -?? ) (2012: 20 marks) Solution: The given equation is : ?? (?? -1)?? ' -(2?? -1)?? +2?? =?? 2 (2?? -3) ? ?? '' - (2?? -1) ?? (?? -1) ?? ' + 2?? ?? (?? -1) = ?? 2 (2?? -3) ?? (?? -1) (??) which is of the form of ?? '' +???? +???? =?? ?? = -(2?? -1) ?? (?? -1) ,?? = 2 ?? ' (?? -1) 2+2???? +?? ?? 2 =2+2?? · [-(2?? -1)] ?? (?? -1) +?? 2 · 2 ?? (?? -1) =0 ?4=?? 2 is a part of the complementary function. Also ?? = Second part of ?? .?? . =?? ? ?? -? ?????? ?? 2 ???? =?? 2 ? 1 ?? 4 ?? ? 2?? -1 ?? (?? -1) ???? ???? =?? 2 ? 1 ?? 4 ·?? ? ( 1 ?? + 1 ?? -1 )???? ?? ?? =?? 2 ? 1 ?? 4 ·(?? 2 -?? )???? =?? 2 ? ( 1 ?? 2 - 1 ?? 3 )???? =?? 2 ( ?? -1 -1 - ?? -2 -2 ) =-?? +2 So, the complementary function is ?? ?? =?? 1 +?? 2 ?? +?? 3 ?? ?? where ?? 1 ,?? 2 and ?? 3 are arbitrary constants. Particular integral is ?? ?? = 1 (?? 3 -?? 2 ) (12?? 2 +6?? ) = -1 ?? 2 (1-?? ) (12?? 2 +6?? ) = -1 ?? 2 (1-?? ) -1 (12?? 2 +6?? ) = -1 ?? 2 (1+?? +?? 2 +?.)(12?? 2 +6?? ) = -1 ?? 2 (12?? 2 +30?? +30) = -1 ?? (4?? 3 +15?? 2 +30?? ) =-(?? 4 +5?? 3 +15?? 2 ) ? The required general solution is : ?? =?? ?? +?? ?? =?? 1 +?? 2 ?? +?? 3 ?? ?? -(?? 4 +5?? 3 +15?? 2 ) Particular integral, P.I. =?? ? ?? -??????? ?? 2 (??? 4 ?? -??????? ???? )???? =?? 2 ? (?? 2 -?? ) ?? 4 (? ?? (2?? -3) (?? -1) ·?? (?? -1)???? )???? [??? -? ?????? =?? (1) 1] =?? 2 ? ?? 2 -?? ?? 4 [? ?? 2 (2?? -3)???? ]???? =?? 2 ? ?? -1 ?? 3 [? (2?? 3 -3?? 2 )???? ]???? = ?? 2 2 ? (?? -1)(?? -2)???? = ?? 2 2 ? (?? 2 -3?? -2)???? = ?? 2 2 ( ?? 3 3 - 3?? 2 2 +2?? ) ? Complete solution of (i) is ?? =?? 1 ?? 2 +?? 2 (2-?? )+ ?? 2 2 ( ?? 3 3 - 3?? 2 2 +2?? ) 6.2 Find the general solution of the equation: ?? ?? ?? ?? ?? ?? ?? ?? +?? ???? ???? +?? =???? ?? ?????? (???? ?? ) (2013: 15 Marks) Solution: We have (?? 2 ?? 2 +???? +1)?? =ln ?? sin (ln ?? ) This is in the Cauchy-Euler form. Let ?? =ln ?? ? ???? ???? = 1 ?? ??? ?? ???? = ?? ???? ????? =?? 1 where ?? ???? =?? 1 Similarly, ?? 2 ?? 2 =?? 1 (?? 1 -1) ? (?? 1 (?? 1 -1)+?? 1 +1)?? =?? sin ?? ? (?? 1 2 +1)?? =?? sin ?? Auxiliary equation is ?? 2 +1=0 ? Comfiementary function (C.F.) ?? =±?? =?? 1 cos ?? +?? 2 sin ?? P.I. = 1 (?? 2 +1) ?? sin ?? = Real part 1 ?? 2 +1 ?? ?? ???? Now, 1 ?? 2 +1 ?? ?? ???? =?? ???? 1 (?? +??) 2 +1 ?? =?? ???? 1 ?? 2 +2???? ?? = ?? ???? 2?? 1 ?? (1+ ?? 2?? ) -1 ?? = ?? ???? 2?? · 1 ?? (1- ?? 2?? + ?? 2 4?? 2 )?? = ?? ???? 2?? 1 ?? (?? - 1 2?? )= ?? ???? 2?? ( ?? 2 2 - ?? 2?? ) = ?? ???? 4 (-???? 2 +?? ) ? R.P. of 1 ?? 2 +1 ?? ?? ???? = R.P. of { ?? ???? 4 (-???? 2 +?? )} = 1 4 (?? cos ?? +?? 2 sin ?? ) ? ???? = 1 4 (?? cos ?? +?? 2 sin ?? ) ?? =?? 1 cos ?? +?? 2 sin ?? + ?? 4 cos ?? + ?? 2 4 sin ?? =(?? 1 + ln ?? 4 )cos (ln ?? )+{?? 2 + (ln ?? ) 2 4 }sin (ln ?? ) 6.3 Solve the differential equation: ?? ?? ?? ?? ?? ?? ?? ?? +?? ?? ?? ?? ?? ?? ?? ?? ?? +?? ???? ???? +?? ?? =???? ?????? (?????? ?? ?? ) (2014 : 20 Marks) Solution: Given that (?? 3 ?? 3 +3?? 2 ?? 2 +???? +8)?? =65cos log ?? (??) ?????? ?? =?? ?? ? log ?? =?? ?????? ?????? ?? 1 = ?? ???? Then 2?? =?? 1 and ?? 2 ?? 2 =?? 1 (?? 1 -1) ?? 3 =?? 1 (?? 1 -1)(?? 1 -2) ? (i), we have (?? 1 (?? 1 -1)(?? 1 -2)+3(?? 1 )(?? 1 -1)+?? 1 +8)?? =65cos ?? ? (?? 1 3 +8)?? =65cos?? (???? ) Auxiliary equation of (ii) is ? ?? 1 3 +8 =0 ? (?? 1 +2)(?? 1 -2?? 1 +4) =0 ?? 1 =-2,1±v3?? ? C.F. =?? ?? =?? 1 ?? -2?? +?? 2 ?? ?? (?? 2 cos v3?? +?? 3 sin v3?? ) P.I. = 1 (?? 1 3 +8) (65cos ?? ) = 65 -?? 1 +8 cos ?? = (?? 1 +8)65 -?? 1 2 +64 cos ?? = 65 65 (?? 1 +8)cos ?? =(?? 1 +8)cos ?? =-sin ?? +8cos ?? ?? =?? ?? +?? ?? ?? =?? 1 ?? -2?? +?? ?? (?? 2 cos v3?? +?? 3 sin v3?? )-sin ?? +8cos ?? =?? 1 ?? -2 +?? (?? 2 cos v3log ?? +?? 3 sin v3log ?? )-sin (log ?? )+8cos (log ?? ) which is the required solution. 6.4 Solve : ?? ?? ?? ?? ?? ?? ?? ?? +?? ?? ?? ?? ?? ?? ?? ?? ?? +?? ?? ?? ?? ?? ?? ?? ?? ?? -?? ?? ???? ???? -?? ?? =?? ?? +???????? (?????? ?? ) . (2015 : 13 Marks) Solution: Putting ?? =?? ?? , equation becomes [?? (?? -1)(?? -2)(?? -3)+6?? (?? -1)(?? -2)+4?? (?? -1)-2?? -4]=?? 2?? +2cos ?? [?? (?? -1)(?? -2)(?? -3)+6?? (?? -1)(?? -2)+2(?? -2)(?? +1)]=?? 2?? +2cos ?? ? (?? 2 +1)(?? 2 -4)?? =?? ?? +2cos ?? For homogeneous part ?? ?? =?? 1 ?? 2?? +?? 2 ?? -2?? +?? 3 sin ?? +?? 4 cos ?? Particular integralRead More
387 videos|203 docs
|