Series | Mathematics Optional Notes for UPSC PDF Download

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


Edurev123 
3. Series 
3.1 Show that the series : (
?? ?? )
?? +(
?? ·?? ?? ·?? )
?? +?..+(
?? ·?? ·?? ….(?? ?? -?? )
?? ·?? ·?? ….?? ?? )
?? +? converges. 
(2009 : 15 Marks) 
Solution: 
(
1
3
)
2
+(
1·4
3·6
)
2
+?.+(
1.47….(3?? +2)
3.6.9….3?? )
2
?+?..
?? ?? ?=(
1.4.7….(3?? -2)
3.6.9…..3?? )
2
?? ?? +1
?=(
1.4.7….(3?? -2)(3?? +1)
3.6.9….(3?? )(3?? +3)
)
2
?? ?? ?? ?? +1
?=
(?? ?? +3)
2
.
(3?? +1)
2
?? ?? ?? ?? +1
-1?=
9?? 2
+9+18?? -9?? 2
-1-6?? (3?? +1)
2
?=
12?? +8
(3?? +1)
2
 
lim
?? ?8
??? (
?? ?? ?? ?? +1
-1)?= lim
?? ?8
?
12?? 2
+8?? (3?? +1)
2
?=
12
9
>1
 
By Rabee's test, series is convergent. 
3.2 Show that: ?????? ?? ??? ??
?? =?? 8
?
?? ?? ?? ?? ?? ?? +?? ?? =?
?? =?? 8
?
?? ?? ?? ?? +?? . Justify all steps of your answer by 
quoting the theorems you are using. 
(2009 : 15 Marks) 
Solution: 
To prove the required result, we use the following result : "The limit of the sum function 
of a series = the sum of the series of limits of functions", i.e., 
lim
?? ??? 0
???
8
?? =1
?? ?? (?? )=??
8
?? =1
lim
?? ??? 0
??? ?? (?? ) 
where ?
?? =1
8
??? ?? (?? ) converges uniformly in [?? ,?? ] and ?? 0
 is a point in [?? ,?? ]. 
Page 2


Edurev123 
3. Series 
3.1 Show that the series : (
?? ?? )
?? +(
?? ·?? ?? ·?? )
?? +?..+(
?? ·?? ·?? ….(?? ?? -?? )
?? ·?? ·?? ….?? ?? )
?? +? converges. 
(2009 : 15 Marks) 
Solution: 
(
1
3
)
2
+(
1·4
3·6
)
2
+?.+(
1.47….(3?? +2)
3.6.9….3?? )
2
?+?..
?? ?? ?=(
1.4.7….(3?? -2)
3.6.9…..3?? )
2
?? ?? +1
?=(
1.4.7….(3?? -2)(3?? +1)
3.6.9….(3?? )(3?? +3)
)
2
?? ?? ?? ?? +1
?=
(?? ?? +3)
2
.
(3?? +1)
2
?? ?? ?? ?? +1
-1?=
9?? 2
+9+18?? -9?? 2
-1-6?? (3?? +1)
2
?=
12?? +8
(3?? +1)
2
 
lim
?? ?8
??? (
?? ?? ?? ?? +1
-1)?= lim
?? ?8
?
12?? 2
+8?? (3?? +1)
2
?=
12
9
>1
 
By Rabee's test, series is convergent. 
3.2 Show that: ?????? ?? ??? ??
?? =?? 8
?
?? ?? ?? ?? ?? ?? +?? ?? =?
?? =?? 8
?
?? ?? ?? ?? +?? . Justify all steps of your answer by 
quoting the theorems you are using. 
(2009 : 15 Marks) 
Solution: 
To prove the required result, we use the following result : "The limit of the sum function 
of a series = the sum of the series of limits of functions", i.e., 
lim
?? ??? 0
???
8
?? =1
?? ?? (?? )=??
8
?? =1
lim
?? ??? 0
??? ?? (?? ) 
where ?
?? =1
8
??? ?? (?? ) converges uniformly in [?? ,?? ] and ?? 0
 is a point in [?? ,?? ]. 
So, as per the question, if we take ?? =0 and ?? =2 and ?? 0
=1 i.e., ?? 0
 is a point in [0,2], 
then 
lim
?? ?1
???
8
?? =1
?
?? 2
?? 2
?? 4
+?? 4
=??
8
?? =1
?
?? 2
?? 4
+?? 4
(??) 
But for this result, we need to prove that ?
?? =1
8
?
?? 2
?? 2
?? 4
+?? 4
 converges uniformiv in [0,2] and 
where ?? 0
=1 is a point in [0,2]. 
Now to prove ?
?? =1
8
?
?? 2
?? 2
?? 4
+?? 4
 converges uniformly in [0,2].?[?? 0
=1 is taken] 
Proof : This theorem/result can be proved by Drichlet's test. 
Let 
??
8
?? =1
??? ?? (?? )?=??
8
?? =1
??? ?? (?? )h
?? (?? )=??
8
?? =1
??? 2
?? 2
×
1
?? 4
+?? 4
?? ?? (?? )?=?? 2
?? 2
 
???????????????????????????????????????????????h
?? (?? )=
1
?? 4
+?? 4
???????????????????????????????????????????????????????????????????????????????(???? ) 
Drichlet's test states that 
(i) if there exists a real number ?? such that 
|?? ?? (?? )|=??
?? ?? =1
?? ?? (?? )<?? ??? ?[?? ,?? ],?? ??? and  
(ii) ?h
?? (?? )? is positive monotonic decreasing sequence converging uniformly to zero on 
[?? ,?? ], then the series ? ?? ?? (?? )h
?? (?? ) is uniformly convergent on [?? ,?? ]. 
From (ii), we know that 
|?? ?? (?? )|=??
?? ?? =1
?? ?? (?? )=??
?? ?? =1
?? 2
?? 2
=
?? (?? +1)(2?? +1)?? 2
6
<?? ??? ?[0,2],?? ??? 
(where ?? is a real number) 
Also, 
<h?? (?? )>=
1
?? 4
+?? 4
 
is a positive monotonic decreasing sequence converges uniformly to zero on [0,2]. 
Page 3


Edurev123 
3. Series 
3.1 Show that the series : (
?? ?? )
?? +(
?? ·?? ?? ·?? )
?? +?..+(
?? ·?? ·?? ….(?? ?? -?? )
?? ·?? ·?? ….?? ?? )
?? +? converges. 
(2009 : 15 Marks) 
Solution: 
(
1
3
)
2
+(
1·4
3·6
)
2
+?.+(
1.47….(3?? +2)
3.6.9….3?? )
2
?+?..
?? ?? ?=(
1.4.7….(3?? -2)
3.6.9…..3?? )
2
?? ?? +1
?=(
1.4.7….(3?? -2)(3?? +1)
3.6.9….(3?? )(3?? +3)
)
2
?? ?? ?? ?? +1
?=
(?? ?? +3)
2
.
(3?? +1)
2
?? ?? ?? ?? +1
-1?=
9?? 2
+9+18?? -9?? 2
-1-6?? (3?? +1)
2
?=
12?? +8
(3?? +1)
2
 
lim
?? ?8
??? (
?? ?? ?? ?? +1
-1)?= lim
?? ?8
?
12?? 2
+8?? (3?? +1)
2
?=
12
9
>1
 
By Rabee's test, series is convergent. 
3.2 Show that: ?????? ?? ??? ??
?? =?? 8
?
?? ?? ?? ?? ?? ?? +?? ?? =?
?? =?? 8
?
?? ?? ?? ?? +?? . Justify all steps of your answer by 
quoting the theorems you are using. 
(2009 : 15 Marks) 
Solution: 
To prove the required result, we use the following result : "The limit of the sum function 
of a series = the sum of the series of limits of functions", i.e., 
lim
?? ??? 0
???
8
?? =1
?? ?? (?? )=??
8
?? =1
lim
?? ??? 0
??? ?? (?? ) 
where ?
?? =1
8
??? ?? (?? ) converges uniformly in [?? ,?? ] and ?? 0
 is a point in [?? ,?? ]. 
So, as per the question, if we take ?? =0 and ?? =2 and ?? 0
=1 i.e., ?? 0
 is a point in [0,2], 
then 
lim
?? ?1
???
8
?? =1
?
?? 2
?? 2
?? 4
+?? 4
=??
8
?? =1
?
?? 2
?? 4
+?? 4
(??) 
But for this result, we need to prove that ?
?? =1
8
?
?? 2
?? 2
?? 4
+?? 4
 converges uniformiv in [0,2] and 
where ?? 0
=1 is a point in [0,2]. 
Now to prove ?
?? =1
8
?
?? 2
?? 2
?? 4
+?? 4
 converges uniformly in [0,2].?[?? 0
=1 is taken] 
Proof : This theorem/result can be proved by Drichlet's test. 
Let 
??
8
?? =1
??? ?? (?? )?=??
8
?? =1
??? ?? (?? )h
?? (?? )=??
8
?? =1
??? 2
?? 2
×
1
?? 4
+?? 4
?? ?? (?? )?=?? 2
?? 2
 
???????????????????????????????????????????????h
?? (?? )=
1
?? 4
+?? 4
???????????????????????????????????????????????????????????????????????????????(???? ) 
Drichlet's test states that 
(i) if there exists a real number ?? such that 
|?? ?? (?? )|=??
?? ?? =1
?? ?? (?? )<?? ??? ?[?? ,?? ],?? ??? and  
(ii) ?h
?? (?? )? is positive monotonic decreasing sequence converging uniformly to zero on 
[?? ,?? ], then the series ? ?? ?? (?? )h
?? (?? ) is uniformly convergent on [?? ,?? ]. 
From (ii), we know that 
|?? ?? (?? )|=??
?? ?? =1
?? ?? (?? )=??
?? ?? =1
?? 2
?? 2
=
?? (?? +1)(2?? +1)?? 2
6
<?? ??? ?[0,2],?? ??? 
(where ?? is a real number) 
Also, 
<h?? (?? )>=
1
?? 4
+?? 4
 
is a positive monotonic decreasing sequence converges uniformly to zero on [0,2]. 
??????
?? =1
8
??? ?? (?? )h
?? (?? )=?
?? =1
8
?
?? 2
?? 2
?? 4
+?? 4
 converges uniformly in [0,2] 
From (i) and (iii), we get the desired result. 
3.3 Consider the series ?
?? =?? 8
?
?? ?? (?? +?? ?? )
?? . Find the values of ?? for which it is convergent 
and also the sum function. Is the convergence uniform? Justify your answer. 
(2010 : 15 Marks) 
Solution: 
Given series is ?
?? =0
8
?
?? 2
(1+?? 2
)
?? =?? ?? . 
Case 1 : If ?? =0 
then ???????????????????????????????????????????????????????????? ?? =0 
So it uniformly converges to zero. 
Case 2 : If ?? ?0 
then 
?? ?? =??
8
?? =0
?? 2
(1+?? 2
)
?? 
Now, 
?? ?? ?? ?? +1
=
?? 2
(1+?? 2
)
?? ?? 2
(1+?? 2
)
?? +1
=1+?? 2
>1???? ?0 
? It will converge as per D'Alembert test. 
??? ?? converges for all values of ?? . 
Now, 
?? ?? ?=??
8
?? =0
?
?? 2
(1+?? 2
)
?? =?? 2
??
8
?? =0
?
1
(1+?? 2
)
?? ?=?? 2
×
(1-(
1
1+?? 2
)
?? )
1-
1
1+?? 2
?=(1+?? 2
) as ?? ?8
 
Page 4


Edurev123 
3. Series 
3.1 Show that the series : (
?? ?? )
?? +(
?? ·?? ?? ·?? )
?? +?..+(
?? ·?? ·?? ….(?? ?? -?? )
?? ·?? ·?? ….?? ?? )
?? +? converges. 
(2009 : 15 Marks) 
Solution: 
(
1
3
)
2
+(
1·4
3·6
)
2
+?.+(
1.47….(3?? +2)
3.6.9….3?? )
2
?+?..
?? ?? ?=(
1.4.7….(3?? -2)
3.6.9…..3?? )
2
?? ?? +1
?=(
1.4.7….(3?? -2)(3?? +1)
3.6.9….(3?? )(3?? +3)
)
2
?? ?? ?? ?? +1
?=
(?? ?? +3)
2
.
(3?? +1)
2
?? ?? ?? ?? +1
-1?=
9?? 2
+9+18?? -9?? 2
-1-6?? (3?? +1)
2
?=
12?? +8
(3?? +1)
2
 
lim
?? ?8
??? (
?? ?? ?? ?? +1
-1)?= lim
?? ?8
?
12?? 2
+8?? (3?? +1)
2
?=
12
9
>1
 
By Rabee's test, series is convergent. 
3.2 Show that: ?????? ?? ??? ??
?? =?? 8
?
?? ?? ?? ?? ?? ?? +?? ?? =?
?? =?? 8
?
?? ?? ?? ?? +?? . Justify all steps of your answer by 
quoting the theorems you are using. 
(2009 : 15 Marks) 
Solution: 
To prove the required result, we use the following result : "The limit of the sum function 
of a series = the sum of the series of limits of functions", i.e., 
lim
?? ??? 0
???
8
?? =1
?? ?? (?? )=??
8
?? =1
lim
?? ??? 0
??? ?? (?? ) 
where ?
?? =1
8
??? ?? (?? ) converges uniformly in [?? ,?? ] and ?? 0
 is a point in [?? ,?? ]. 
So, as per the question, if we take ?? =0 and ?? =2 and ?? 0
=1 i.e., ?? 0
 is a point in [0,2], 
then 
lim
?? ?1
???
8
?? =1
?
?? 2
?? 2
?? 4
+?? 4
=??
8
?? =1
?
?? 2
?? 4
+?? 4
(??) 
But for this result, we need to prove that ?
?? =1
8
?
?? 2
?? 2
?? 4
+?? 4
 converges uniformiv in [0,2] and 
where ?? 0
=1 is a point in [0,2]. 
Now to prove ?
?? =1
8
?
?? 2
?? 2
?? 4
+?? 4
 converges uniformly in [0,2].?[?? 0
=1 is taken] 
Proof : This theorem/result can be proved by Drichlet's test. 
Let 
??
8
?? =1
??? ?? (?? )?=??
8
?? =1
??? ?? (?? )h
?? (?? )=??
8
?? =1
??? 2
?? 2
×
1
?? 4
+?? 4
?? ?? (?? )?=?? 2
?? 2
 
???????????????????????????????????????????????h
?? (?? )=
1
?? 4
+?? 4
???????????????????????????????????????????????????????????????????????????????(???? ) 
Drichlet's test states that 
(i) if there exists a real number ?? such that 
|?? ?? (?? )|=??
?? ?? =1
?? ?? (?? )<?? ??? ?[?? ,?? ],?? ??? and  
(ii) ?h
?? (?? )? is positive monotonic decreasing sequence converging uniformly to zero on 
[?? ,?? ], then the series ? ?? ?? (?? )h
?? (?? ) is uniformly convergent on [?? ,?? ]. 
From (ii), we know that 
|?? ?? (?? )|=??
?? ?? =1
?? ?? (?? )=??
?? ?? =1
?? 2
?? 2
=
?? (?? +1)(2?? +1)?? 2
6
<?? ??? ?[0,2],?? ??? 
(where ?? is a real number) 
Also, 
<h?? (?? )>=
1
?? 4
+?? 4
 
is a positive monotonic decreasing sequence converges uniformly to zero on [0,2]. 
??????
?? =1
8
??? ?? (?? )h
?? (?? )=?
?? =1
8
?
?? 2
?? 2
?? 4
+?? 4
 converges uniformly in [0,2] 
From (i) and (iii), we get the desired result. 
3.3 Consider the series ?
?? =?? 8
?
?? ?? (?? +?? ?? )
?? . Find the values of ?? for which it is convergent 
and also the sum function. Is the convergence uniform? Justify your answer. 
(2010 : 15 Marks) 
Solution: 
Given series is ?
?? =0
8
?
?? 2
(1+?? 2
)
?? =?? ?? . 
Case 1 : If ?? =0 
then ???????????????????????????????????????????????????????????? ?? =0 
So it uniformly converges to zero. 
Case 2 : If ?? ?0 
then 
?? ?? =??
8
?? =0
?? 2
(1+?? 2
)
?? 
Now, 
?? ?? ?? ?? +1
=
?? 2
(1+?? 2
)
?? ?? 2
(1+?? 2
)
?? +1
=1+?? 2
>1???? ?0 
? It will converge as per D'Alembert test. 
??? ?? converges for all values of ?? . 
Now, 
?? ?? ?=??
8
?? =0
?
?? 2
(1+?? 2
)
?? =?? 2
??
8
?? =0
?
1
(1+?? 2
)
?? ?=?? 2
×
(1-(
1
1+?? 2
)
?? )
1-
1
1+?? 2
?=(1+?? 2
) as ?? ?8
 
??? ?? is finite. 
So, ?? ?? is uniformly convergent as |?? ?? |=?? ?? . 
3.4 Show that the series for which the sum of first ?? terms 
?? ?? (?? )=
????
?? +?? ?? ?? ?? ,?? =?? =?? 
cannot be differentiated term-by-term at ?? =?? . What happens at ?? ??? ? 
(2011: 15 marks) 
Solution: 
Given 
??
8
?? =1
?? ?? (?? )=?? ?? (?? )=
????
1+?? 2
?? 2
 
??lim
?? ?8
???
8
?? =1
??? ?? (?? )?= lim
?? ?8
??? ?? (?? )= lim
?? ?8
?
????
1+?? 2
?? 2
?= lim
?? ?8
?
?? 1
?? 2
+?? 2
=0,??? ?[0,1]
 
If we differentiate term-wise, we get 
??
?? ?? =1
??? ?? '
(?? )=?? ?? '
(?? )=
?? (1-?? 2
?? 2
)
(1+?? 2
?? 2
)
2
(??) 
At ?? =0 
??
?? ?? =1
?? ?? '
(?? )=?? ?? (0)=?? , which clearly does not tend to 0 as ?? ?8.  
????
?? ?? =1
?? ?? (?? )=?? ?? (?? )=
?? ?? 1+?? 2
?? 2
 can not be differentiated term by term at ?? =0.  
When ?? ?0, from (i) 
lim
?? ?8
???
?? ?? =1
?? ?? '
(?? )= lim
?? ?8
??? ?? '
(?? )=0= lim
?? ?8
???
?? ?? =1
?? ?? (?? ) 
Hence, ?
?? =1
8
??? ?? (?? ) can be differentiated term by term when ?? ?0. 
Page 5


Edurev123 
3. Series 
3.1 Show that the series : (
?? ?? )
?? +(
?? ·?? ?? ·?? )
?? +?..+(
?? ·?? ·?? ….(?? ?? -?? )
?? ·?? ·?? ….?? ?? )
?? +? converges. 
(2009 : 15 Marks) 
Solution: 
(
1
3
)
2
+(
1·4
3·6
)
2
+?.+(
1.47….(3?? +2)
3.6.9….3?? )
2
?+?..
?? ?? ?=(
1.4.7….(3?? -2)
3.6.9…..3?? )
2
?? ?? +1
?=(
1.4.7….(3?? -2)(3?? +1)
3.6.9….(3?? )(3?? +3)
)
2
?? ?? ?? ?? +1
?=
(?? ?? +3)
2
.
(3?? +1)
2
?? ?? ?? ?? +1
-1?=
9?? 2
+9+18?? -9?? 2
-1-6?? (3?? +1)
2
?=
12?? +8
(3?? +1)
2
 
lim
?? ?8
??? (
?? ?? ?? ?? +1
-1)?= lim
?? ?8
?
12?? 2
+8?? (3?? +1)
2
?=
12
9
>1
 
By Rabee's test, series is convergent. 
3.2 Show that: ?????? ?? ??? ??
?? =?? 8
?
?? ?? ?? ?? ?? ?? +?? ?? =?
?? =?? 8
?
?? ?? ?? ?? +?? . Justify all steps of your answer by 
quoting the theorems you are using. 
(2009 : 15 Marks) 
Solution: 
To prove the required result, we use the following result : "The limit of the sum function 
of a series = the sum of the series of limits of functions", i.e., 
lim
?? ??? 0
???
8
?? =1
?? ?? (?? )=??
8
?? =1
lim
?? ??? 0
??? ?? (?? ) 
where ?
?? =1
8
??? ?? (?? ) converges uniformly in [?? ,?? ] and ?? 0
 is a point in [?? ,?? ]. 
So, as per the question, if we take ?? =0 and ?? =2 and ?? 0
=1 i.e., ?? 0
 is a point in [0,2], 
then 
lim
?? ?1
???
8
?? =1
?
?? 2
?? 2
?? 4
+?? 4
=??
8
?? =1
?
?? 2
?? 4
+?? 4
(??) 
But for this result, we need to prove that ?
?? =1
8
?
?? 2
?? 2
?? 4
+?? 4
 converges uniformiv in [0,2] and 
where ?? 0
=1 is a point in [0,2]. 
Now to prove ?
?? =1
8
?
?? 2
?? 2
?? 4
+?? 4
 converges uniformly in [0,2].?[?? 0
=1 is taken] 
Proof : This theorem/result can be proved by Drichlet's test. 
Let 
??
8
?? =1
??? ?? (?? )?=??
8
?? =1
??? ?? (?? )h
?? (?? )=??
8
?? =1
??? 2
?? 2
×
1
?? 4
+?? 4
?? ?? (?? )?=?? 2
?? 2
 
???????????????????????????????????????????????h
?? (?? )=
1
?? 4
+?? 4
???????????????????????????????????????????????????????????????????????????????(???? ) 
Drichlet's test states that 
(i) if there exists a real number ?? such that 
|?? ?? (?? )|=??
?? ?? =1
?? ?? (?? )<?? ??? ?[?? ,?? ],?? ??? and  
(ii) ?h
?? (?? )? is positive monotonic decreasing sequence converging uniformly to zero on 
[?? ,?? ], then the series ? ?? ?? (?? )h
?? (?? ) is uniformly convergent on [?? ,?? ]. 
From (ii), we know that 
|?? ?? (?? )|=??
?? ?? =1
?? ?? (?? )=??
?? ?? =1
?? 2
?? 2
=
?? (?? +1)(2?? +1)?? 2
6
<?? ??? ?[0,2],?? ??? 
(where ?? is a real number) 
Also, 
<h?? (?? )>=
1
?? 4
+?? 4
 
is a positive monotonic decreasing sequence converges uniformly to zero on [0,2]. 
??????
?? =1
8
??? ?? (?? )h
?? (?? )=?
?? =1
8
?
?? 2
?? 2
?? 4
+?? 4
 converges uniformly in [0,2] 
From (i) and (iii), we get the desired result. 
3.3 Consider the series ?
?? =?? 8
?
?? ?? (?? +?? ?? )
?? . Find the values of ?? for which it is convergent 
and also the sum function. Is the convergence uniform? Justify your answer. 
(2010 : 15 Marks) 
Solution: 
Given series is ?
?? =0
8
?
?? 2
(1+?? 2
)
?? =?? ?? . 
Case 1 : If ?? =0 
then ???????????????????????????????????????????????????????????? ?? =0 
So it uniformly converges to zero. 
Case 2 : If ?? ?0 
then 
?? ?? =??
8
?? =0
?? 2
(1+?? 2
)
?? 
Now, 
?? ?? ?? ?? +1
=
?? 2
(1+?? 2
)
?? ?? 2
(1+?? 2
)
?? +1
=1+?? 2
>1???? ?0 
? It will converge as per D'Alembert test. 
??? ?? converges for all values of ?? . 
Now, 
?? ?? ?=??
8
?? =0
?
?? 2
(1+?? 2
)
?? =?? 2
??
8
?? =0
?
1
(1+?? 2
)
?? ?=?? 2
×
(1-(
1
1+?? 2
)
?? )
1-
1
1+?? 2
?=(1+?? 2
) as ?? ?8
 
??? ?? is finite. 
So, ?? ?? is uniformly convergent as |?? ?? |=?? ?? . 
3.4 Show that the series for which the sum of first ?? terms 
?? ?? (?? )=
????
?? +?? ?? ?? ?? ,?? =?? =?? 
cannot be differentiated term-by-term at ?? =?? . What happens at ?? ??? ? 
(2011: 15 marks) 
Solution: 
Given 
??
8
?? =1
?? ?? (?? )=?? ?? (?? )=
????
1+?? 2
?? 2
 
??lim
?? ?8
???
8
?? =1
??? ?? (?? )?= lim
?? ?8
??? ?? (?? )= lim
?? ?8
?
????
1+?? 2
?? 2
?= lim
?? ?8
?
?? 1
?? 2
+?? 2
=0,??? ?[0,1]
 
If we differentiate term-wise, we get 
??
?? ?? =1
??? ?? '
(?? )=?? ?? '
(?? )=
?? (1-?? 2
?? 2
)
(1+?? 2
?? 2
)
2
(??) 
At ?? =0 
??
?? ?? =1
?? ?? '
(?? )=?? ?? (0)=?? , which clearly does not tend to 0 as ?? ?8.  
????
?? ?? =1
?? ?? (?? )=?? ?? (?? )=
?? ?? 1+?? 2
?? 2
 can not be differentiated term by term at ?? =0.  
When ?? ?0, from (i) 
lim
?? ?8
???
?? ?? =1
?? ?? '
(?? )= lim
?? ?8
??? ?? '
(?? )=0= lim
?? ?8
???
?? ?? =1
?? ?? (?? ) 
Hence, ?
?? =1
8
??? ?? (?? ) can be differentiated term by term when ?? ?0. 
3.5 Show that if ?? (?? )=?
?? =?? 8
?
?? ?? ?? +?? ?? ?? ?? , then its derivative 
?? '
(?? )=-?? ?? ??
8
?? =?? ?? ?? ?? (?? +?? ?? ?? )
?? , for all ?? .  
(2011 : 20 Marks) 
Solution: 
Given : 
?? (?? )=??
8
?? =1
1
?? 3
+?? 4
?? 2
 
As 
1
?? 3
+?? 4
?? 2
=
1
?? 3
??? ??? ,?? ??? 
???? ?? =
1
?? 3
 and ??
8
?? =1
?? ?? =??
8
?? =1
1
?? 3
 converges.  
? By Weierstrass's M-test (A series of functions S?? ?? will converge uniformly and 
absolutely on [?? ,?? ] if there exists a convergent series S?? ?? of positive numbers such that 
for all ?? ?[?? ,?? ]. 
|?? ?? (?? )|=?? ?? for all ?? 
?? (?? )=??
8
?? =1
?? ?? (?? ) converges uniformly.  
Let 
?? ?? (?? )=?? ?? (?? )=
-2?? ?? 2
(1+?? ?? 2
)
2
 
and 
?? ?? '
(?? )=
-2+6?? ?? 2
?? 2
(1+?? ?? 2
)
3
 
For maximum and minimum, 
?? ?? '
(?? )=0 
??????????????????????????????????????????????????????????????-2+6?? ?? 2
=0??? 2
=
1
3?? 
It can be verified that ?? ?? ''
(?? )<0 for ?? 2
=
1
3?? . 
Read More
387 videos|203 docs

FAQs on Series - Mathematics Optional Notes for UPSC

1. क्या UPSC द्वारा आयोजित परीक्षाओं में सीरीज के बारे में प्रश्न पूछे जाते हैं?
उत्तर: हां, UPSC द्वारा आयोजित परीक्षाओं में सीरीज से संबंधित प्रश्न पूछे जा सकते हैं। इसमें विभिन्न श्रेणियों में सीरीज के प्रकार, महत्व, और उपयोग के बारे में पूछा जा सकता है।
2. सीरीज क्या है और यह UPSC परीक्षाओं में क्यों महत्वपूर्ण है?
उत्तर: सीरीज एक गणितीय या अंकगणितीय श्रेणी है जो एक स्थिर पैटर्न में विभिन्न संख्याओं को शामिल करती है। UPSC परीक्षाओं में सीरीज के प्रश्न उम्मीदवारों की गणितीय क्षमता और तार्किक सोच का मापन करने के लिए पूछे जाते हैं।
3. सीरीज के प्रकार क्या होते हैं और उन्हें कैसे पहचाना जा सकता है?
उत्तर: सीरीज के प्रकार श्रेणी, समानांतर, वृद्धि, घटना, और अन्य हो सकते हैं। इन्हें पहचानने के लिए, उम्मीदवारों को पैटर्न में उत्तरों की श्रेणीकरण करनी होगी और उसके आधार पर संख्याओं के बीच संबंध की पहचान करनी होगी।
4. सीरीज को समाप्त करने के लिए कौन-कौन से गणितीय तरीके उपयोग किए जा सकते हैं?
उत्तर: सीरीज को समाप्त करने के लिए गणितीय तरीके जैसे कि अंकगणित, समानांतर श्रेणी, और रूपांतरण का उपयोग किया जा सकता है। ये तरीके उम्मीदवारों को सीरीज के पैटर्न को समझने और उसे पूरा करने में मदद कर सकते हैं।
5. UPSC परीक्षाओं में सीरीज के प्रश्नों को हल करने के लिए क्या तैयारी की जानी चाहिए?
उत्तर: UPSC परीक्षाओं में सीरीज के प्रश्नों को हल करने के लिए अच्छी गणितीय तैयारी, पूर्व वर्षों के प्रश्न पत्रों का अध्ययन, और प्रैक्टिस टेस्ट का उचित रूप से अभ्यास करना चाहिए। इसके अलावा, सीरीज के प्रकारों और सूत्रों को समझने के लिए भी ध्यान देना चाहिए।
Related Searches

mock tests for examination

,

Summary

,

Series | Mathematics Optional Notes for UPSC

,

Sample Paper

,

ppt

,

practice quizzes

,

MCQs

,

video lectures

,

Objective type Questions

,

Series | Mathematics Optional Notes for UPSC

,

past year papers

,

shortcuts and tricks

,

Previous Year Questions with Solutions

,

Semester Notes

,

Series | Mathematics Optional Notes for UPSC

,

Extra Questions

,

pdf

,

Important questions

,

Free

,

Viva Questions

,

Exam

,

study material

;