UPSC Exam  >  UPSC Notes  >  Mathematics Optional Notes for UPSC  >  Shortest Distance between Two Skew lines

Shortest Distance between Two Skew lines | Mathematics Optional Notes for UPSC PDF Download

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


Edurev123 
2. Shortest Distance between Two Skew 
lines 
2.1 Find the shortest distance between the lines 
?? -?? ?? =
?? -?? ?? =?? -?? and ?? -???? =?? =
?? . For what value of ?? will the two lines intersect? 
(2016 : 10 Marks) 
Solution: 
Lines are : 
?? 1
·
?? -1
2
=
?? -2
4
=
?? -3
1
?? 2
:
?? 1
=
?? ?? =
?? 0
 [
?? -???? =0
?? =0
]
 
 
?? 1
(1,2,3) on ?? 1
;?? 2
(0,0,0) on ?? 2
 
Shortest distance (SD) is the projection of ?? 1
?? 2
 on ???? which is perpendicular to both 
lines. Direction ratio's of ???? : 
|
?? ?? ?? 2 4 1
1 ?? 0
| =??(0-?? )-?? (0-1)+?? (2?? -4)
 =-???? +?? +(2?? -4)?? ???? =
1
v?? 2
+1+(2?? -4)
2
[-?? (1-0)+1(2-0)+(2?? -4)(3-0)
 =|
5?? -10
v5?? 2
-16?? +17
|
 
The lines will intersect if, ???? =0, i.e. 5?? -10=0??? =2. 
Page 2


Edurev123 
2. Shortest Distance between Two Skew 
lines 
2.1 Find the shortest distance between the lines 
?? -?? ?? =
?? -?? ?? =?? -?? and ?? -???? =?? =
?? . For what value of ?? will the two lines intersect? 
(2016 : 10 Marks) 
Solution: 
Lines are : 
?? 1
·
?? -1
2
=
?? -2
4
=
?? -3
1
?? 2
:
?? 1
=
?? ?? =
?? 0
 [
?? -???? =0
?? =0
]
 
 
?? 1
(1,2,3) on ?? 1
;?? 2
(0,0,0) on ?? 2
 
Shortest distance (SD) is the projection of ?? 1
?? 2
 on ???? which is perpendicular to both 
lines. Direction ratio's of ???? : 
|
?? ?? ?? 2 4 1
1 ?? 0
| =??(0-?? )-?? (0-1)+?? (2?? -4)
 =-???? +?? +(2?? -4)?? ???? =
1
v?? 2
+1+(2?? -4)
2
[-?? (1-0)+1(2-0)+(2?? -4)(3-0)
 =|
5?? -10
v5?? 2
-16?? +17
|
 
The lines will intersect if, ???? =0, i.e. 5?? -10=0??? =2. 
2.2 Find the shortest distance between the skew lines, 
?? -?? ?? =
?? -?? ?? =
?? -?? ?? and 
?? +?? -?? =
?? +?? ?? =
?? -?? ?? . 
(2017 : 10 Marks) 
Solution: 
Shortest distance lies along a direction which is perpendicular to both lines and given by 
the cross-product of vectors along given two lines, ?? 1
,?? 2
. 
???  =|
?? ?? ?? 3 -1 1
-3 2 4
|
 =??(-4-2)-?? (12+3)+?? (6-3)
 =-6?? -15?? +3?? =-3(2?? +5?? -?? )
 
?                                                 ??ˆ =
1
v30
(2?? +5?? -?? ) 
 
S.D. is the projection of ???? along ??ˆ. 
                                    ???? =????
????? 
·??ˆ 
=
1
v30
[13-(-3))2+(8-(-7))5-(3-6)·1]
 =
1
v30
(12+75+3)=
90
v30
 =3v30
 
2.3 Find the shortest distance between the lines 
Page 3


Edurev123 
2. Shortest Distance between Two Skew 
lines 
2.1 Find the shortest distance between the lines 
?? -?? ?? =
?? -?? ?? =?? -?? and ?? -???? =?? =
?? . For what value of ?? will the two lines intersect? 
(2016 : 10 Marks) 
Solution: 
Lines are : 
?? 1
·
?? -1
2
=
?? -2
4
=
?? -3
1
?? 2
:
?? 1
=
?? ?? =
?? 0
 [
?? -???? =0
?? =0
]
 
 
?? 1
(1,2,3) on ?? 1
;?? 2
(0,0,0) on ?? 2
 
Shortest distance (SD) is the projection of ?? 1
?? 2
 on ???? which is perpendicular to both 
lines. Direction ratio's of ???? : 
|
?? ?? ?? 2 4 1
1 ?? 0
| =??(0-?? )-?? (0-1)+?? (2?? -4)
 =-???? +?? +(2?? -4)?? ???? =
1
v?? 2
+1+(2?? -4)
2
[-?? (1-0)+1(2-0)+(2?? -4)(3-0)
 =|
5?? -10
v5?? 2
-16?? +17
|
 
The lines will intersect if, ???? =0, i.e. 5?? -10=0??? =2. 
2.2 Find the shortest distance between the skew lines, 
?? -?? ?? =
?? -?? ?? =
?? -?? ?? and 
?? +?? -?? =
?? +?? ?? =
?? -?? ?? . 
(2017 : 10 Marks) 
Solution: 
Shortest distance lies along a direction which is perpendicular to both lines and given by 
the cross-product of vectors along given two lines, ?? 1
,?? 2
. 
???  =|
?? ?? ?? 3 -1 1
-3 2 4
|
 =??(-4-2)-?? (12+3)+?? (6-3)
 =-6?? -15?? +3?? =-3(2?? +5?? -?? )
 
?                                                 ??ˆ =
1
v30
(2?? +5?? -?? ) 
 
S.D. is the projection of ???? along ??ˆ. 
                                    ???? =????
????? 
·??ˆ 
=
1
v30
[13-(-3))2+(8-(-7))5-(3-6)·1]
 =
1
v30
(12+75+3)=
90
v30
 =3v30
 
2.3 Find the shortest distance between the lines 
?? ?? ?? +?? ?? ?? +?? ?? ?? +?? ?? =?? ?? ?? ?? +?? ?? ?? +?? ?? ?? +?? ?? =?? 
and ?????? ?? -axis. 
(2018 : 12 Marks) 
Solution: 
        The equation of ?? -axis is ?? =?? =0 
?     Any plane, ?? , through ?? -axis can be written as 
??¨+???? =0 (??) 
       Further, any plane ?? 2
, through given set of planes is 
                                                 ?? 1
?? +?? 1
?? +?? 1
?? +?? 1
+?? (?? 2
?? +?? 2
?? +?? 2
?? +?? 2
)=0 
 i.e.,                   (?? 1
+?? ?? 2
)?? +(?? 1
+?? ?? 2
)?? +(?? 1
+?? ?? 2
)?? +?? 1
+?? ?? 2
=0 (???? ) 
For shortest distance ?? 1
 and ?? 2
 should be parallel. 
 ?                                           
?? 1
+?? ?? 2
1
=
?? 1
+???
?? 2
?? =
?? 1
+?? ?? 2
0
 i.e.,                                         ?? 1
+?? ?? 2
=0
 ?                                                         ?? =
?? 1
?? 2
 
? equation of ?? 2
 is 
(?? 1
-
?? 1
?? 2
?? 2
)?? +(?? 1
-
?? 1
?? 2
?? 2
)?? +(?? 1
-
?? 1
?? 2
)?? 2
=0 
Shortest distance, 
?? =
|?? 1
+?? ?? 2
-0|
v(?? 1
+?? ?? 2
)
2
+(?? 1
+?? ?? 2
)
2
+0
2
?? =
|?? 2
?? 1
+?? 1
?? 2
|
v(?? 2
?? 1
-?? 1
?? 2
)
2
+(?? 2
?? 1
-?? 1
?? 2
)
2
 
2.4 Show that the lines 
?? +?? -?? =
?? -?? ?? =
?? +?? ?? and 
?? ?? =
?? -?? -?? =
?? +?? ?? intersect. Find the 
coordinates of the point of intersection and the equation of the plane containing 
them. 
(2019: 10 Marks) 
Page 4


Edurev123 
2. Shortest Distance between Two Skew 
lines 
2.1 Find the shortest distance between the lines 
?? -?? ?? =
?? -?? ?? =?? -?? and ?? -???? =?? =
?? . For what value of ?? will the two lines intersect? 
(2016 : 10 Marks) 
Solution: 
Lines are : 
?? 1
·
?? -1
2
=
?? -2
4
=
?? -3
1
?? 2
:
?? 1
=
?? ?? =
?? 0
 [
?? -???? =0
?? =0
]
 
 
?? 1
(1,2,3) on ?? 1
;?? 2
(0,0,0) on ?? 2
 
Shortest distance (SD) is the projection of ?? 1
?? 2
 on ???? which is perpendicular to both 
lines. Direction ratio's of ???? : 
|
?? ?? ?? 2 4 1
1 ?? 0
| =??(0-?? )-?? (0-1)+?? (2?? -4)
 =-???? +?? +(2?? -4)?? ???? =
1
v?? 2
+1+(2?? -4)
2
[-?? (1-0)+1(2-0)+(2?? -4)(3-0)
 =|
5?? -10
v5?? 2
-16?? +17
|
 
The lines will intersect if, ???? =0, i.e. 5?? -10=0??? =2. 
2.2 Find the shortest distance between the skew lines, 
?? -?? ?? =
?? -?? ?? =
?? -?? ?? and 
?? +?? -?? =
?? +?? ?? =
?? -?? ?? . 
(2017 : 10 Marks) 
Solution: 
Shortest distance lies along a direction which is perpendicular to both lines and given by 
the cross-product of vectors along given two lines, ?? 1
,?? 2
. 
???  =|
?? ?? ?? 3 -1 1
-3 2 4
|
 =??(-4-2)-?? (12+3)+?? (6-3)
 =-6?? -15?? +3?? =-3(2?? +5?? -?? )
 
?                                                 ??ˆ =
1
v30
(2?? +5?? -?? ) 
 
S.D. is the projection of ???? along ??ˆ. 
                                    ???? =????
????? 
·??ˆ 
=
1
v30
[13-(-3))2+(8-(-7))5-(3-6)·1]
 =
1
v30
(12+75+3)=
90
v30
 =3v30
 
2.3 Find the shortest distance between the lines 
?? ?? ?? +?? ?? ?? +?? ?? ?? +?? ?? =?? ?? ?? ?? +?? ?? ?? +?? ?? ?? +?? ?? =?? 
and ?????? ?? -axis. 
(2018 : 12 Marks) 
Solution: 
        The equation of ?? -axis is ?? =?? =0 
?     Any plane, ?? , through ?? -axis can be written as 
??¨+???? =0 (??) 
       Further, any plane ?? 2
, through given set of planes is 
                                                 ?? 1
?? +?? 1
?? +?? 1
?? +?? 1
+?? (?? 2
?? +?? 2
?? +?? 2
?? +?? 2
)=0 
 i.e.,                   (?? 1
+?? ?? 2
)?? +(?? 1
+?? ?? 2
)?? +(?? 1
+?? ?? 2
)?? +?? 1
+?? ?? 2
=0 (???? ) 
For shortest distance ?? 1
 and ?? 2
 should be parallel. 
 ?                                           
?? 1
+?? ?? 2
1
=
?? 1
+???
?? 2
?? =
?? 1
+?? ?? 2
0
 i.e.,                                         ?? 1
+?? ?? 2
=0
 ?                                                         ?? =
?? 1
?? 2
 
? equation of ?? 2
 is 
(?? 1
-
?? 1
?? 2
?? 2
)?? +(?? 1
-
?? 1
?? 2
?? 2
)?? +(?? 1
-
?? 1
?? 2
)?? 2
=0 
Shortest distance, 
?? =
|?? 1
+?? ?? 2
-0|
v(?? 1
+?? ?? 2
)
2
+(?? 1
+?? ?? 2
)
2
+0
2
?? =
|?? 2
?? 1
+?? 1
?? 2
|
v(?? 2
?? 1
-?? 1
?? 2
)
2
+(?? 2
?? 1
-?? 1
?? 2
)
2
 
2.4 Show that the lines 
?? +?? -?? =
?? -?? ?? =
?? +?? ?? and 
?? ?? =
?? -?? -?? =
?? +?? ?? intersect. Find the 
coordinates of the point of intersection and the equation of the plane containing 
them. 
(2019: 10 Marks) 
Solution: 
Any point on the line 
?? +1
-3
=
?? -3
2
=
?? +2
1
 
is                                                            (-1-3?? ,3+2?? ,-2+
?? )                                               …(??) 
Similarly, any part on the line 
?? 1
=
?? -7
-3
=
?? +7
2
 
is                                                              (?? 2
,7-3?? 1
,-7+
2?? -1
)                                               …(???? )                 
If the two given lines intersect then for some value of ?? and ?? 2
 the two above points (i) 
and (ii) must coincide. i.e., 
 -1-3?? =?? 1
3+2?? =7-3?? 1
 -2+?? =-7+2?? -1
 
Solving the first two of these equations, we get 
?? =-1,?? 1
=2 
The so values of ?? and ?? ' satisfy the third equation also. Hence, the given lines intersect. 
Substituting these values ?? and ?? in (1) or (2) we get the required coordinates of the 
point of intersection as (2,1,-3) , 
Also, the equation of the plane containing the given lines is 
|
?? +1 ?? -3 ?? +2
-3 2 1
1 -3 2
|=0 
?(?? +1)(4+3)-(?? -3)(-6-1)+(?? +2)(9-2) 
=0 
                       ?? +?? +?? =0 
which is the required equation. 
 
Read More
387 videos|203 docs
Related Searches

Shortest Distance between Two Skew lines | Mathematics Optional Notes for UPSC

,

ppt

,

pdf

,

MCQs

,

video lectures

,

past year papers

,

Semester Notes

,

mock tests for examination

,

Summary

,

Extra Questions

,

shortcuts and tricks

,

Objective type Questions

,

Viva Questions

,

Sample Paper

,

Previous Year Questions with Solutions

,

Free

,

Important questions

,

Shortest Distance between Two Skew lines | Mathematics Optional Notes for UPSC

,

practice quizzes

,

Shortest Distance between Two Skew lines | Mathematics Optional Notes for UPSC

,

Exam

,

study material

;