UPSC Exam  >  UPSC Notes  >  Mathematics Optional Notes for UPSC  >  Solution of Algebraic and Transcendental Equation of One Variable

Solution of Algebraic and Transcendental Equation of One Variable | Mathematics Optional Notes for UPSC PDF Download

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


Edurev123 
Numerical Analysis and Computer 
Programming 
1. Solution of Algebraic and 
Transcendental Equation of One Variable 
1.1 Develop an algorithm for Regula-Falsi method to find a root of ?? (?? )=?? starting 
with two initial iterates ?? ?? and ?? ?? to the root such that ???????? ?(?? (?? ?? ))??????? ?(?? (?? ?? )) . 
Take ?? as the maximum number of iterations allowed and eps be the prescribed 
error. 
(2009 : 30 Marks) 
Solution: 
1. Read ?? 0
,?? 1
, eps, ?? 
Remarks : ?? 0
 and ?? 1
 are two initial guesses to the root such that sin?(?? (?? 0
))?
sign?(?? (?? 1
)) . The prescribed precision is eps and ?? is the maximum number of iterations. 
Steps 2 and 3 are initialization steps. 
      2.?? 0
????? (?? 0
) 
      3.?? 1
??? (?? 1
) 
     4.For ?? =1 to ?? in steps of 1 do. 
     5.?? 2
?(?? 0
?? 1
-?? 1
?? 0
)/(?? 1
-?? 0
) 
     6.?? 2
??? (?? 2
) 
     7.if |?? 2
!= eps then 
8. begin write 'convergent solution', ?? 2
,?? 2
 
       9 . stop end 
10. if sign?(?? 2
)?sign?(?? 0
) 
11. Then begin ?? 1
??? 2
 
12. ?? 1
??? 2
 end 
13. else begin ?? 0
??? 2
 
14. ?? 0
??? 2
 end 
Page 2


Edurev123 
Numerical Analysis and Computer 
Programming 
1. Solution of Algebraic and 
Transcendental Equation of One Variable 
1.1 Develop an algorithm for Regula-Falsi method to find a root of ?? (?? )=?? starting 
with two initial iterates ?? ?? and ?? ?? to the root such that ???????? ?(?? (?? ?? ))??????? ?(?? (?? ?? )) . 
Take ?? as the maximum number of iterations allowed and eps be the prescribed 
error. 
(2009 : 30 Marks) 
Solution: 
1. Read ?? 0
,?? 1
, eps, ?? 
Remarks : ?? 0
 and ?? 1
 are two initial guesses to the root such that sin?(?? (?? 0
))?
sign?(?? (?? 1
)) . The prescribed precision is eps and ?? is the maximum number of iterations. 
Steps 2 and 3 are initialization steps. 
      2.?? 0
????? (?? 0
) 
      3.?? 1
??? (?? 1
) 
     4.For ?? =1 to ?? in steps of 1 do. 
     5.?? 2
?(?? 0
?? 1
-?? 1
?? 0
)/(?? 1
-?? 0
) 
     6.?? 2
??? (?? 2
) 
     7.if |?? 2
!= eps then 
8. begin write 'convergent solution', ?? 2
,?? 2
 
       9 . stop end 
10. if sign?(?? 2
)?sign?(?? 0
) 
11. Then begin ?? 1
??? 2
 
12. ?? 1
??? 2
 end 
13. else begin ?? 0
??? 2
 
14. ?? 0
??? 2
 end 
              end for 
15. Write 'Does not converge in ?? iterations'. 
16. Write ?? 2
,?? 2
 
17. Stop 
1.2 Find the positive root of the equation 
???? ?? ?? -?? ?? -?? =?? 
correct upto 6 decimal places by using Newton-Raphson method. Carry out 
computations only for three iterations. 
(2010 : 12 Marks) 
Solution: 
Given : 
????????????????????????????? (?? )=10?? ?? -?? 2
-1 
??????????????????????????? '
(?? )=10?? -?? 2
+10?? ?? -?? 2
×(-2?? ) 
?????????????????????????????????????=10?? -?? 2
(1-2?? 2
) 
Let ?? 0
=0 
Using Newton-Raphson's method 
?? ?? +1
?=?? ?? -
?? (?? ?? )
?? '
(?? ?? )
?? 1
?=?? 0
-
?? (?? 0
)
?? '
(?? 0
)
=0-(-0.1)=0.1
?? 2
?=?? 1
-
?? (?? 1
)
?? '
(?? 1
)
=0.101026
?? 3
?=?? 2
-
?? (?? 2
)
?? '
(?? 2
)
=0.101026
 
? The positive root is 0.101026 (approx.) 
1.3 Use Newton-Raphson method to find the real root of the equation ?? ?? =?????? ??? +
?? correct to four decimal places. 
(2012 : 12 Marks) 
Solution: 
The given equation is 
?? (?? )=3?? -cos??? -1=0 
60)<0 and ?? (0.61)>0 
Page 3


Edurev123 
Numerical Analysis and Computer 
Programming 
1. Solution of Algebraic and 
Transcendental Equation of One Variable 
1.1 Develop an algorithm for Regula-Falsi method to find a root of ?? (?? )=?? starting 
with two initial iterates ?? ?? and ?? ?? to the root such that ???????? ?(?? (?? ?? ))??????? ?(?? (?? ?? )) . 
Take ?? as the maximum number of iterations allowed and eps be the prescribed 
error. 
(2009 : 30 Marks) 
Solution: 
1. Read ?? 0
,?? 1
, eps, ?? 
Remarks : ?? 0
 and ?? 1
 are two initial guesses to the root such that sin?(?? (?? 0
))?
sign?(?? (?? 1
)) . The prescribed precision is eps and ?? is the maximum number of iterations. 
Steps 2 and 3 are initialization steps. 
      2.?? 0
????? (?? 0
) 
      3.?? 1
??? (?? 1
) 
     4.For ?? =1 to ?? in steps of 1 do. 
     5.?? 2
?(?? 0
?? 1
-?? 1
?? 0
)/(?? 1
-?? 0
) 
     6.?? 2
??? (?? 2
) 
     7.if |?? 2
!= eps then 
8. begin write 'convergent solution', ?? 2
,?? 2
 
       9 . stop end 
10. if sign?(?? 2
)?sign?(?? 0
) 
11. Then begin ?? 1
??? 2
 
12. ?? 1
??? 2
 end 
13. else begin ?? 0
??? 2
 
14. ?? 0
??? 2
 end 
              end for 
15. Write 'Does not converge in ?? iterations'. 
16. Write ?? 2
,?? 2
 
17. Stop 
1.2 Find the positive root of the equation 
???? ?? ?? -?? ?? -?? =?? 
correct upto 6 decimal places by using Newton-Raphson method. Carry out 
computations only for three iterations. 
(2010 : 12 Marks) 
Solution: 
Given : 
????????????????????????????? (?? )=10?? ?? -?? 2
-1 
??????????????????????????? '
(?? )=10?? -?? 2
+10?? ?? -?? 2
×(-2?? ) 
?????????????????????????????????????=10?? -?? 2
(1-2?? 2
) 
Let ?? 0
=0 
Using Newton-Raphson's method 
?? ?? +1
?=?? ?? -
?? (?? ?? )
?? '
(?? ?? )
?? 1
?=?? 0
-
?? (?? 0
)
?? '
(?? 0
)
=0-(-0.1)=0.1
?? 2
?=?? 1
-
?? (?? 1
)
?? '
(?? 1
)
=0.101026
?? 3
?=?? 2
-
?? (?? 2
)
?? '
(?? 2
)
=0.101026
 
? The positive root is 0.101026 (approx.) 
1.3 Use Newton-Raphson method to find the real root of the equation ?? ?? =?????? ??? +
?? correct to four decimal places. 
(2012 : 12 Marks) 
Solution: 
The given equation is 
?? (?? )=3?? -cos??? -1=0 
60)<0 and ?? (0.61)>0 
Hence, a real root of ?? (?? ) lies in the interval (0.60,0.61) 
?? (?? )=3+sin??? 
From Newton-Raphson's method, we have 
?? ?? +1
?=?? ?? -
?? (?? ?? )
?? '
(?? ?? )
?=?? ?? -
3?? ?? -cos??? ?? -1
3+sin??? ?? 
Taking ?? 0
=0.60, we get 
?? 1
?=?? 0
-
?? (?? 0
)
?? '
(?? 0
)
?=?? 0
-
3?? 0
-cos??? 0
-1
3+sin??? 0
?=0.60-
3(0.60)-cos?(0.60)-1
3+sin?(0.60)
?=0.60701
?? 2
?=?? 1
-
?? (?? 1
)
?? '
(?? 1
)
?=?? 1
-
3?? 1
-cos??? 1
-1
3+sin??? 1
?=0.60701-
3(0.60701)-cos?(0.60701)-1
3+sin?(0.60701)
?=0.60710
?? 3
?=?? 2
-
?? (?? 2
)
?? '
(?? 2
)
 
?=?? 2
-
3?? 2
-cos??? 2
-1
3+sin??? 2
?=0.60710-
3(0.60710)-cos?(0.60710)-1
3+sin?(0.60710)
?=0.60710
 
Since ?? 2
=?? 3
,??? =0.60710 is a root of ?? (?? ) . 
1.4 Apply Newton-Raphson method to determine a root of the equation ?????? ??? -
?? ?? ?? =?? . Correct upto four decimal places. 
(2014 : 10 Marks) 
Solution: 
?? (?? )=cos??? -?? ?? ?? 
So that, 
Page 4


Edurev123 
Numerical Analysis and Computer 
Programming 
1. Solution of Algebraic and 
Transcendental Equation of One Variable 
1.1 Develop an algorithm for Regula-Falsi method to find a root of ?? (?? )=?? starting 
with two initial iterates ?? ?? and ?? ?? to the root such that ???????? ?(?? (?? ?? ))??????? ?(?? (?? ?? )) . 
Take ?? as the maximum number of iterations allowed and eps be the prescribed 
error. 
(2009 : 30 Marks) 
Solution: 
1. Read ?? 0
,?? 1
, eps, ?? 
Remarks : ?? 0
 and ?? 1
 are two initial guesses to the root such that sin?(?? (?? 0
))?
sign?(?? (?? 1
)) . The prescribed precision is eps and ?? is the maximum number of iterations. 
Steps 2 and 3 are initialization steps. 
      2.?? 0
????? (?? 0
) 
      3.?? 1
??? (?? 1
) 
     4.For ?? =1 to ?? in steps of 1 do. 
     5.?? 2
?(?? 0
?? 1
-?? 1
?? 0
)/(?? 1
-?? 0
) 
     6.?? 2
??? (?? 2
) 
     7.if |?? 2
!= eps then 
8. begin write 'convergent solution', ?? 2
,?? 2
 
       9 . stop end 
10. if sign?(?? 2
)?sign?(?? 0
) 
11. Then begin ?? 1
??? 2
 
12. ?? 1
??? 2
 end 
13. else begin ?? 0
??? 2
 
14. ?? 0
??? 2
 end 
              end for 
15. Write 'Does not converge in ?? iterations'. 
16. Write ?? 2
,?? 2
 
17. Stop 
1.2 Find the positive root of the equation 
???? ?? ?? -?? ?? -?? =?? 
correct upto 6 decimal places by using Newton-Raphson method. Carry out 
computations only for three iterations. 
(2010 : 12 Marks) 
Solution: 
Given : 
????????????????????????????? (?? )=10?? ?? -?? 2
-1 
??????????????????????????? '
(?? )=10?? -?? 2
+10?? ?? -?? 2
×(-2?? ) 
?????????????????????????????????????=10?? -?? 2
(1-2?? 2
) 
Let ?? 0
=0 
Using Newton-Raphson's method 
?? ?? +1
?=?? ?? -
?? (?? ?? )
?? '
(?? ?? )
?? 1
?=?? 0
-
?? (?? 0
)
?? '
(?? 0
)
=0-(-0.1)=0.1
?? 2
?=?? 1
-
?? (?? 1
)
?? '
(?? 1
)
=0.101026
?? 3
?=?? 2
-
?? (?? 2
)
?? '
(?? 2
)
=0.101026
 
? The positive root is 0.101026 (approx.) 
1.3 Use Newton-Raphson method to find the real root of the equation ?? ?? =?????? ??? +
?? correct to four decimal places. 
(2012 : 12 Marks) 
Solution: 
The given equation is 
?? (?? )=3?? -cos??? -1=0 
60)<0 and ?? (0.61)>0 
Hence, a real root of ?? (?? ) lies in the interval (0.60,0.61) 
?? (?? )=3+sin??? 
From Newton-Raphson's method, we have 
?? ?? +1
?=?? ?? -
?? (?? ?? )
?? '
(?? ?? )
?=?? ?? -
3?? ?? -cos??? ?? -1
3+sin??? ?? 
Taking ?? 0
=0.60, we get 
?? 1
?=?? 0
-
?? (?? 0
)
?? '
(?? 0
)
?=?? 0
-
3?? 0
-cos??? 0
-1
3+sin??? 0
?=0.60-
3(0.60)-cos?(0.60)-1
3+sin?(0.60)
?=0.60701
?? 2
?=?? 1
-
?? (?? 1
)
?? '
(?? 1
)
?=?? 1
-
3?? 1
-cos??? 1
-1
3+sin??? 1
?=0.60701-
3(0.60701)-cos?(0.60701)-1
3+sin?(0.60701)
?=0.60710
?? 3
?=?? 2
-
?? (?? 2
)
?? '
(?? 2
)
 
?=?? 2
-
3?? 2
-cos??? 2
-1
3+sin??? 2
?=0.60710-
3(0.60710)-cos?(0.60710)-1
3+sin?(0.60710)
?=0.60710
 
Since ?? 2
=?? 3
,??? =0.60710 is a root of ?? (?? ) . 
1.4 Apply Newton-Raphson method to determine a root of the equation ?????? ??? -
?? ?? ?? =?? . Correct upto four decimal places. 
(2014 : 10 Marks) 
Solution: 
?? (?? )=cos??? -?? ?? ?? 
So that, 
?? (0)=1 
and 
?? (?? )=cos?1-?? =-2.17798 
???????????????????????????????????????????????????? (0)?? (??)<0 
 
Hence the root lies between 0 and 1 . 
Take                                  ?? 0
=0 and ?? 1
=1 
?????????????????????????????????????? (?? ,0)=1 and ?? (?? 1
)=-2.17798 
By the method of fase position, we get 
?? 2
?=
?? 0
?? (?? 1
)-?? 1
(?? 0
)
?? (?? 1
)-?? (?? 0
)
?=
0(-2.17798)-1(1)
-2.1779.8-?? =0.31467
 
? The first approximation to the root is 
?? 2
?=0.31467
?? (?? 2
)?=0.51987>0
?? (?? 2
)?? (?? 1
)?<0
 
? The root lies between 0.31467 and 1 . 
Take                                    ?? 0
=0.31467 and ?? 1
=1 
?? (?? 0
)?=0.51987 and ?? (?? 1
)=-2.17798
?? 3
?=
(0.3146)(-2.17798)-1(0.51987)
-2.17798-0.5187
=0.44673
 
The 2
nd 
 approximation to the root is, 
?? 3
=0.44673 
Now repeating this process, the successive approximations are 
?? 4
=0.49402,?? 5
=0.50995
?? 6
=0.51520,?? 7
=0.51692,?? 8
=0.51748
?? 9
=0.51767,?? 10
=0.51775 etc. 
 
? The approximate root is 0.5177 correct to 4 decimal places. 
1.5 Apply Newton-Raphson method, to find a real root of transcendental equation 
?? ??????
????
??? =?? .?? , correct to three decimal places. 
Page 5


Edurev123 
Numerical Analysis and Computer 
Programming 
1. Solution of Algebraic and 
Transcendental Equation of One Variable 
1.1 Develop an algorithm for Regula-Falsi method to find a root of ?? (?? )=?? starting 
with two initial iterates ?? ?? and ?? ?? to the root such that ???????? ?(?? (?? ?? ))??????? ?(?? (?? ?? )) . 
Take ?? as the maximum number of iterations allowed and eps be the prescribed 
error. 
(2009 : 30 Marks) 
Solution: 
1. Read ?? 0
,?? 1
, eps, ?? 
Remarks : ?? 0
 and ?? 1
 are two initial guesses to the root such that sin?(?? (?? 0
))?
sign?(?? (?? 1
)) . The prescribed precision is eps and ?? is the maximum number of iterations. 
Steps 2 and 3 are initialization steps. 
      2.?? 0
????? (?? 0
) 
      3.?? 1
??? (?? 1
) 
     4.For ?? =1 to ?? in steps of 1 do. 
     5.?? 2
?(?? 0
?? 1
-?? 1
?? 0
)/(?? 1
-?? 0
) 
     6.?? 2
??? (?? 2
) 
     7.if |?? 2
!= eps then 
8. begin write 'convergent solution', ?? 2
,?? 2
 
       9 . stop end 
10. if sign?(?? 2
)?sign?(?? 0
) 
11. Then begin ?? 1
??? 2
 
12. ?? 1
??? 2
 end 
13. else begin ?? 0
??? 2
 
14. ?? 0
??? 2
 end 
              end for 
15. Write 'Does not converge in ?? iterations'. 
16. Write ?? 2
,?? 2
 
17. Stop 
1.2 Find the positive root of the equation 
???? ?? ?? -?? ?? -?? =?? 
correct upto 6 decimal places by using Newton-Raphson method. Carry out 
computations only for three iterations. 
(2010 : 12 Marks) 
Solution: 
Given : 
????????????????????????????? (?? )=10?? ?? -?? 2
-1 
??????????????????????????? '
(?? )=10?? -?? 2
+10?? ?? -?? 2
×(-2?? ) 
?????????????????????????????????????=10?? -?? 2
(1-2?? 2
) 
Let ?? 0
=0 
Using Newton-Raphson's method 
?? ?? +1
?=?? ?? -
?? (?? ?? )
?? '
(?? ?? )
?? 1
?=?? 0
-
?? (?? 0
)
?? '
(?? 0
)
=0-(-0.1)=0.1
?? 2
?=?? 1
-
?? (?? 1
)
?? '
(?? 1
)
=0.101026
?? 3
?=?? 2
-
?? (?? 2
)
?? '
(?? 2
)
=0.101026
 
? The positive root is 0.101026 (approx.) 
1.3 Use Newton-Raphson method to find the real root of the equation ?? ?? =?????? ??? +
?? correct to four decimal places. 
(2012 : 12 Marks) 
Solution: 
The given equation is 
?? (?? )=3?? -cos??? -1=0 
60)<0 and ?? (0.61)>0 
Hence, a real root of ?? (?? ) lies in the interval (0.60,0.61) 
?? (?? )=3+sin??? 
From Newton-Raphson's method, we have 
?? ?? +1
?=?? ?? -
?? (?? ?? )
?? '
(?? ?? )
?=?? ?? -
3?? ?? -cos??? ?? -1
3+sin??? ?? 
Taking ?? 0
=0.60, we get 
?? 1
?=?? 0
-
?? (?? 0
)
?? '
(?? 0
)
?=?? 0
-
3?? 0
-cos??? 0
-1
3+sin??? 0
?=0.60-
3(0.60)-cos?(0.60)-1
3+sin?(0.60)
?=0.60701
?? 2
?=?? 1
-
?? (?? 1
)
?? '
(?? 1
)
?=?? 1
-
3?? 1
-cos??? 1
-1
3+sin??? 1
?=0.60701-
3(0.60701)-cos?(0.60701)-1
3+sin?(0.60701)
?=0.60710
?? 3
?=?? 2
-
?? (?? 2
)
?? '
(?? 2
)
 
?=?? 2
-
3?? 2
-cos??? 2
-1
3+sin??? 2
?=0.60710-
3(0.60710)-cos?(0.60710)-1
3+sin?(0.60710)
?=0.60710
 
Since ?? 2
=?? 3
,??? =0.60710 is a root of ?? (?? ) . 
1.4 Apply Newton-Raphson method to determine a root of the equation ?????? ??? -
?? ?? ?? =?? . Correct upto four decimal places. 
(2014 : 10 Marks) 
Solution: 
?? (?? )=cos??? -?? ?? ?? 
So that, 
?? (0)=1 
and 
?? (?? )=cos?1-?? =-2.17798 
???????????????????????????????????????????????????? (0)?? (??)<0 
 
Hence the root lies between 0 and 1 . 
Take                                  ?? 0
=0 and ?? 1
=1 
?????????????????????????????????????? (?? ,0)=1 and ?? (?? 1
)=-2.17798 
By the method of fase position, we get 
?? 2
?=
?? 0
?? (?? 1
)-?? 1
(?? 0
)
?? (?? 1
)-?? (?? 0
)
?=
0(-2.17798)-1(1)
-2.1779.8-?? =0.31467
 
? The first approximation to the root is 
?? 2
?=0.31467
?? (?? 2
)?=0.51987>0
?? (?? 2
)?? (?? 1
)?<0
 
? The root lies between 0.31467 and 1 . 
Take                                    ?? 0
=0.31467 and ?? 1
=1 
?? (?? 0
)?=0.51987 and ?? (?? 1
)=-2.17798
?? 3
?=
(0.3146)(-2.17798)-1(0.51987)
-2.17798-0.5187
=0.44673
 
The 2
nd 
 approximation to the root is, 
?? 3
=0.44673 
Now repeating this process, the successive approximations are 
?? 4
=0.49402,?? 5
=0.50995
?? 6
=0.51520,?? 7
=0.51692,?? 8
=0.51748
?? 9
=0.51767,?? 10
=0.51775 etc. 
 
? The approximate root is 0.5177 correct to 4 decimal places. 
1.5 Apply Newton-Raphson method, to find a real root of transcendental equation 
?? ??????
????
??? =?? .?? , correct to three decimal places. 
(2019 : 10 Marks) 
Solution: 
Here, 
?? log??? ?=1.2
?? log??? -1.2?=0
 
Let 
?? (?? )=?? log??? -1.2 
???????????????????????????????????????????????????????????????????? (?? )=log??? +1 
Here,                                         
Here,??????????????????????????????????????????????????????????? (2)=-0.6<0 and ?? (3)=0.23>0 
? Root lies between (2) and (3) 
?? 0
=
2+3
2
=2??? 0
=2.5 
1st Iteration : 
?? (?? 0
)?=?? (2.5)=(2.5)log?(2.5)-1.2=0.21
?? (?? 0
)?=?? (2.5)=log?(2.5)+1=1.4
?? 1
?=?? 0
-
?? (?? 0
)
?? '
(?? 0
)
=2.5-
(-0.21)
1.4
=2.650
 
2nd iteration: 
?? (?? 1
)?=?? (2.65)=(2.65)log?(2.65)-1.2=-0.08
?? '
(?? 1
)?=?? (2.65)=log?(2.65)+1=1.42
?? 2
?=2.65-
(-0.08)
1.42
=2.65+0.056=2.706
 
3rd iteration : 
?? (?? 2
)?=?? (2.706)=2.706log?2.706-1.2
?=1.16987-1.2=-0.0301
?? '
(?? 2
)?=?? (2.706)=log?(2.706)+1=1.432
?? 3
?=2.706-
(-0.0301)
1.432
=2.706+0.021
?? 3
?=2.727
 
4th Iteration : 
Read More
387 videos|203 docs

FAQs on Solution of Algebraic and Transcendental Equation of One Variable - Mathematics Optional Notes for UPSC

1. What are the different types of equations that can be solved using algebraic and transcendental methods?
Ans. Algebraic equations involve only algebraic operations like addition, subtraction, multiplication, and division, while transcendental equations involve transcendental functions like exponential, logarithmic, and trigonometric functions.
2. How can algebraic and transcendental equations be solved numerically?
Ans. Algebraic equations can be solved using techniques like factoring, completing the square, or using the quadratic formula. Transcendental equations often require numerical methods like Newton's method or the bisection method.
3. Can algebraic and transcendental equations have multiple solutions?
Ans. Yes, both algebraic and transcendental equations can have multiple solutions, especially when dealing with higher-order polynomials or complex functions.
4. What are some real-world applications of solving algebraic and transcendental equations?
Ans. Solving these equations is crucial in fields like engineering, physics, economics, and computer science for tasks such as modeling physical systems, optimizing processes, and predicting outcomes.
5. Are there any software tools available for solving algebraic and transcendental equations?
Ans. Yes, there are several software tools like MATLAB, Mathematica, and Wolfram Alpha that can solve both algebraic and transcendental equations, making the process faster and more accurate.
Related Searches

Semester Notes

,

Extra Questions

,

Sample Paper

,

Viva Questions

,

pdf

,

Summary

,

mock tests for examination

,

Previous Year Questions with Solutions

,

past year papers

,

study material

,

Solution of Algebraic and Transcendental Equation of One Variable | Mathematics Optional Notes for UPSC

,

video lectures

,

Exam

,

ppt

,

MCQs

,

Important questions

,

shortcuts and tricks

,

Solution of Algebraic and Transcendental Equation of One Variable | Mathematics Optional Notes for UPSC

,

practice quizzes

,

Solution of Algebraic and Transcendental Equation of One Variable | Mathematics Optional Notes for UPSC

,

Free

,

Objective type Questions

;