UPSC Exam  >  UPSC Notes  >  Mathematics Optional Notes for UPSC  >  Straight lines

Straight lines | Mathematics Optional Notes for UPSC PDF Download

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


Edurev123 
Analytic Geometry 
1. Straight lines 
1.1 A line is drawn through a variable point on the ellipse 
?? ?? ?? ?? +
?? ?? ?? ?? =?? ,?? =?? to meet 
fixed lines ?? =???? , ?? =?? and ?? =-???? ,?? =-?? . Find the locus of the line. 
(2009 : 12 Marks) 
Solution: 
Approach: Use general equation of line intersecting two lines given in planar form. 
Given fixed lines are 
?? -???? =0,?? -0=0 (??)
?? +???? =0,?? +?? =0 (???? )
 
General equation of line intersecting both 
(?? -???? )+?? 1
(?? -?? )=0=(?? +???? )+?? 2
(?? +?? ) (?????? ) 
If it meets ellipse we eliminate ?? 1
 and ?? 2
 
Putting ?? =0 in (iii) 
?? -???? -?? 1
?? =0;?? +???? +?? 2
?? =0 
?                                                 
?? -?? 2
?? +?? 1
?? =
?? -(?? 1
+?? 2
)
=
?? 2?? 
?                                                                        ?? =
-(?? 1
+?? 2
)?? 2?? ;?? =
(?? 1
-?? 2
)?? 2
 
Putting this in equation of ellipse 
(?? 1
+?? 2
)
2
?? 2
4?? 2
?? 2
+
(?? 1
-?? 2
)
2
?? 2
4?? 2
 =1
(?? 1
+?? 2
)
2
?? 2
?? 2
+(?? 1
-?? 2
)
2
?? 2
?? 2
?? 2
 =4?? 2
?? 2
?? 2
 
Substituting ?? 1
 and ?? 2
 from (iii) 
{(
???? -?? ?? -?? )+(-
???? +?? ?? +?? )}
2
?? 2
?? 2
+{(
???? -?? ?? -?? )+(
???? +?? ?? +?? )}
2
×?? 2
?? 2
=4?? 2
?? 2
?? 2
 
Page 2


Edurev123 
Analytic Geometry 
1. Straight lines 
1.1 A line is drawn through a variable point on the ellipse 
?? ?? ?? ?? +
?? ?? ?? ?? =?? ,?? =?? to meet 
fixed lines ?? =???? , ?? =?? and ?? =-???? ,?? =-?? . Find the locus of the line. 
(2009 : 12 Marks) 
Solution: 
Approach: Use general equation of line intersecting two lines given in planar form. 
Given fixed lines are 
?? -???? =0,?? -0=0 (??)
?? +???? =0,?? +?? =0 (???? )
 
General equation of line intersecting both 
(?? -???? )+?? 1
(?? -?? )=0=(?? +???? )+?? 2
(?? +?? ) (?????? ) 
If it meets ellipse we eliminate ?? 1
 and ?? 2
 
Putting ?? =0 in (iii) 
?? -???? -?? 1
?? =0;?? +???? +?? 2
?? =0 
?                                                 
?? -?? 2
?? +?? 1
?? =
?? -(?? 1
+?? 2
)
=
?? 2?? 
?                                                                        ?? =
-(?? 1
+?? 2
)?? 2?? ;?? =
(?? 1
-?? 2
)?? 2
 
Putting this in equation of ellipse 
(?? 1
+?? 2
)
2
?? 2
4?? 2
?? 2
+
(?? 1
-?? 2
)
2
?? 2
4?? 2
 =1
(?? 1
+?? 2
)
2
?? 2
?? 2
+(?? 1
-?? 2
)
2
?? 2
?? 2
?? 2
 =4?? 2
?? 2
?? 2
 
Substituting ?? 1
 and ?? 2
 from (iii) 
{(
???? -?? ?? -?? )+(-
???? +?? ?? +?? )}
2
?? 2
?? 2
+{(
???? -?? ?? -?? )+(
???? +?? ?? +?? )}
2
×?? 2
?? 2
=4?? 2
?? 2
?? 2
 
?[(???? -?? )(?? +?? )-(???? +?? )(?? -?? )]
2
?? 2
?? 2
+[(???? -?? )(?? +?? )+(???? +?? )(?? -?? )]
2
?? 2
?? 2
?? 2
=4?? 2
?? 2
?? 2
(?? 2
-?? 2
)
2
 
?[?????? -???? ]
2
?? 2
?? 2
+[?????? -???? ]
2
?? 2
?? 2
?? 2
=?? 2
?? 2
?? 2
(?? 2
-?? 2
)
2
 
which is required locus. 
1.2 Prove that two of the straight lines represented by the equation 
?? ?? +?? ?? ?? ?? +???? ?? ?? +?? ?? =?? 
will be at right angles, if ?? +?? =-?? . 
(2012 : 12 Marks) 
Solution: 
The given equation is a homogeneous equation of third degree and hence it represents 
three straight lines through the origin. 
Let ?? =???? be any of these lines. 
Replacing 
?? ?? by min?? 3
+?? ?? 2
?? +???? ?? 2
+?? 3
=0 or 1+?? ?? ?? +?? ?? 2
?? 2
+
?? 3
?? 3
=0, we get 
?? 3
+?? ?? 2
+???? +1=0 (??) 
Let ?? 1
,?? 2
,?? 3
 be its roots, then 
?? 1
·?? 2
·?? 3
=-1 
But, two of these limes, say with slopes, ?? 1
 and ?? 2
, are at right angles, 
then,                                                             ?? 1
·?? 2
=-1 
Thus,                                                         (-?? 3
)=1 ???? ?? 3
=1 
But ?? 3
 is a root of (i) 
?                                                          1+?? +?? +1=0 
????                                                                         ?? +?? =-2 
1.3 Verify if the lines 
?? -?? +?? ?? -?? =
?? -?? ?? =
?? -?? -?? ?? +?? and 
?? -?? +?? ?? -?? =
?? -?? ?? =
?? -?? -?? ?? +?? are coplanar. If yes, 
then find the equation of the plane in which they lie? 
(2014: 7 Marks) 
Solution: 
Two straight lines 
Page 3


Edurev123 
Analytic Geometry 
1. Straight lines 
1.1 A line is drawn through a variable point on the ellipse 
?? ?? ?? ?? +
?? ?? ?? ?? =?? ,?? =?? to meet 
fixed lines ?? =???? , ?? =?? and ?? =-???? ,?? =-?? . Find the locus of the line. 
(2009 : 12 Marks) 
Solution: 
Approach: Use general equation of line intersecting two lines given in planar form. 
Given fixed lines are 
?? -???? =0,?? -0=0 (??)
?? +???? =0,?? +?? =0 (???? )
 
General equation of line intersecting both 
(?? -???? )+?? 1
(?? -?? )=0=(?? +???? )+?? 2
(?? +?? ) (?????? ) 
If it meets ellipse we eliminate ?? 1
 and ?? 2
 
Putting ?? =0 in (iii) 
?? -???? -?? 1
?? =0;?? +???? +?? 2
?? =0 
?                                                 
?? -?? 2
?? +?? 1
?? =
?? -(?? 1
+?? 2
)
=
?? 2?? 
?                                                                        ?? =
-(?? 1
+?? 2
)?? 2?? ;?? =
(?? 1
-?? 2
)?? 2
 
Putting this in equation of ellipse 
(?? 1
+?? 2
)
2
?? 2
4?? 2
?? 2
+
(?? 1
-?? 2
)
2
?? 2
4?? 2
 =1
(?? 1
+?? 2
)
2
?? 2
?? 2
+(?? 1
-?? 2
)
2
?? 2
?? 2
?? 2
 =4?? 2
?? 2
?? 2
 
Substituting ?? 1
 and ?? 2
 from (iii) 
{(
???? -?? ?? -?? )+(-
???? +?? ?? +?? )}
2
?? 2
?? 2
+{(
???? -?? ?? -?? )+(
???? +?? ?? +?? )}
2
×?? 2
?? 2
=4?? 2
?? 2
?? 2
 
?[(???? -?? )(?? +?? )-(???? +?? )(?? -?? )]
2
?? 2
?? 2
+[(???? -?? )(?? +?? )+(???? +?? )(?? -?? )]
2
?? 2
?? 2
?? 2
=4?? 2
?? 2
?? 2
(?? 2
-?? 2
)
2
 
?[?????? -???? ]
2
?? 2
?? 2
+[?????? -???? ]
2
?? 2
?? 2
?? 2
=?? 2
?? 2
?? 2
(?? 2
-?? 2
)
2
 
which is required locus. 
1.2 Prove that two of the straight lines represented by the equation 
?? ?? +?? ?? ?? ?? +???? ?? ?? +?? ?? =?? 
will be at right angles, if ?? +?? =-?? . 
(2012 : 12 Marks) 
Solution: 
The given equation is a homogeneous equation of third degree and hence it represents 
three straight lines through the origin. 
Let ?? =???? be any of these lines. 
Replacing 
?? ?? by min?? 3
+?? ?? 2
?? +???? ?? 2
+?? 3
=0 or 1+?? ?? ?? +?? ?? 2
?? 2
+
?? 3
?? 3
=0, we get 
?? 3
+?? ?? 2
+???? +1=0 (??) 
Let ?? 1
,?? 2
,?? 3
 be its roots, then 
?? 1
·?? 2
·?? 3
=-1 
But, two of these limes, say with slopes, ?? 1
 and ?? 2
, are at right angles, 
then,                                                             ?? 1
·?? 2
=-1 
Thus,                                                         (-?? 3
)=1 ???? ?? 3
=1 
But ?? 3
 is a root of (i) 
?                                                          1+?? +?? +1=0 
????                                                                         ?? +?? =-2 
1.3 Verify if the lines 
?? -?? +?? ?? -?? =
?? -?? ?? =
?? -?? -?? ?? +?? and 
?? -?? +?? ?? -?? =
?? -?? ?? =
?? -?? -?? ?? +?? are coplanar. If yes, 
then find the equation of the plane in which they lie? 
(2014: 7 Marks) 
Solution: 
Two straight lines 
?? -?? 1
?? 1
=
?? -?? 1
?? 1
=
?? -?? 1
?? 1
 and 
?? -?? 2
?? 2
=
?? -?? 2
?? 2
=
?? -?? 2
?? 2
 
are coplanar if 
|
?? 2
-?? 1
?? 2
-?? 1
?? 2
-?? 1
?? 1
?? 1
?? 1
?? 2
?? 2
?? 2
|=0 
And equation of plane containing them, is 
|
?? -?? 1
?? -?? 1
?? -?? 1
?? 1
?? 1
?? 1
?? 2
?? 2
?? 2
|=0 
Here, in our case, 
|
(?? -?? )-(?? -?? ) ?? -?? ?? +?? -(?? +?? )
?? -?? ?? ?? +?? ?? -?? ?? ?? +?? |
?? 1
??? 1
-?? 2
?? 3
??? 3
-?? 2
 =|
?? -?? ?? -?? ?? -?? -?? ?? ?? -?? ?? ?? |=0 as ?? 1
=-?? 3
 
Hence, the given lines are coplanar. 
The equation of the plane containing thein, is 
|
?? -(?? -?? ) ?? -?? ?? -(?? +?? )
?? -?? ?? ?? +?? ?? -?? ?? ?? +?? |=0. Applying 
?? 1
??? 1
-?? 2
?? 3
??? 3
-?? 2
|
?? -?? +?? ?? -?? ?? -?? -?? -?? ?? ?? -?? ?? ?? |=0?|
?? -2?? +?? ?? -?? ?? -?? -?? 0 ?? ?? 0 ?? ?? |=0 as ?? 1
??? 1
+?? 3
 
?                                                               ?? -2?? +?? =0 
 
 
 
 
 
Read More
387 videos|203 docs

Top Courses for UPSC

FAQs on Straight lines - Mathematics Optional Notes for UPSC

1. What is the eligibility criteria for the UPSC exam?
Ans. The eligibility criteria for the UPSC exam require candidates to have a bachelor's degree from a recognized university.
2. How many attempts are allowed for the UPSC exam?
Ans. General category candidates are allowed 6 attempts for the UPSC exam, while OBC category candidates are allowed 9 attempts, and SC/ST category candidates have unlimited attempts until they reach the upper age limit.
3. What is the age limit for the UPSC exam?
Ans. The age limit for the UPSC exam is between 21 to 32 years for the general category, with relaxation in upper age limit for OBC, SC, and ST categories as per government rules.
4. What is the syllabus for the UPSC exam?
Ans. The UPSC exam syllabus includes subjects like General Studies, English Language, Indian Languages, and optional subjects chosen by the candidate.
5. How is the UPSC exam conducted?
Ans. The UPSC exam is conducted in three stages - Preliminary exam, Main exam, and Personal Interview. Candidates must clear each stage to qualify for the next round.
387 videos|203 docs
Download as PDF
Explore Courses for UPSC exam

Top Courses for UPSC

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

shortcuts and tricks

,

video lectures

,

Straight lines | Mathematics Optional Notes for UPSC

,

practice quizzes

,

Sample Paper

,

Viva Questions

,

past year papers

,

Previous Year Questions with Solutions

,

Free

,

ppt

,

Straight lines | Mathematics Optional Notes for UPSC

,

Straight lines | Mathematics Optional Notes for UPSC

,

Summary

,

study material

,

mock tests for examination

,

Exam

,

Semester Notes

,

Important questions

,

Extra Questions

,

MCQs

,

Objective type Questions

,

pdf

;