Page 1
Edurev123
2. Taylor's Series
2.1 If the function ?? (?? ) is analytic and one valued in |?? -?? |<?? , prove that for ?? <
?? <?? ,?? '
(?? ) =
?? ????
?
?? ?? ?? ??? (?? )?? -????
???? , where ?? (?? ) is the real part of ?? (?? +?? ?? ????
) .
(2011: 15 marks)
Solution:
The function ?? (?? ) is given to be analytic in |?? -?? |<?? and ?? <?? , therefore ?? (?? ) is also
analytic inside the circle ?? defined by |?? -?? |=?? .
???? '
(?? )=
1
2????
??
?? ?
?? (?? )
(?? -?? )
2
???? (??)
Expanding ?? (?? ) in a Taylor's series about ?? =?? , we have
?? (?? )?=??
8
?? =0
??? ?? (?? -?? )
?? ?????????????????????????????????????????? (?? )?=?? (?? +?? ?? ????
)=??
8
?? =0
??? ?? ?? ?? ?? ?????? ?????????????????????????????????????????? (?? )
¯¯¯¯¯¯
?=??
8
?? =0
????
?? ?? ?? ?? -?????? ??????????????
1
2????
??
?? ?
?? (?? )
¯¯¯¯¯¯
(?? -?? )
2
???? ?=
1
2????
? ?
2?? 0
?
S???
?? ?? ?? ?? -??????
?? 2
?? ??2?? ·???? ?? ????
????
=
1
2?? ? ???
?? ?? ?? -1
?
0
2?? ??? -?? (?? +1)????
???? =0
From (i) and (ii), we have
?? (?? )=
1
2????
??
?? ?
?? (?? )?? +?? (?? )
¯¯¯¯¯¯
(?? -?? )
2
????
?=
1
????
? ?
2?? 0
?
real part of ?? (???+?? ?? ????
)???? ?? ????
????
?? 2
?? ??2?? ?[??? =?? +?? ?? ????
]
?=
1
????
? ?
2?? 0
??? (?? )?? -????
???? , where ?? (?? ) is the real part of ?? (?? +?? ?? ????
)
2.2 Describe the maximal ideals in the ring of Gaussian integers ?? [?? ]={?? +???? |
?? ,?? ??? } .
Page 2
Edurev123
2. Taylor's Series
2.1 If the function ?? (?? ) is analytic and one valued in |?? -?? |<?? , prove that for ?? <
?? <?? ,?? '
(?? ) =
?? ????
?
?? ?? ?? ??? (?? )?? -????
???? , where ?? (?? ) is the real part of ?? (?? +?? ?? ????
) .
(2011: 15 marks)
Solution:
The function ?? (?? ) is given to be analytic in |?? -?? |<?? and ?? <?? , therefore ?? (?? ) is also
analytic inside the circle ?? defined by |?? -?? |=?? .
???? '
(?? )=
1
2????
??
?? ?
?? (?? )
(?? -?? )
2
???? (??)
Expanding ?? (?? ) in a Taylor's series about ?? =?? , we have
?? (?? )?=??
8
?? =0
??? ?? (?? -?? )
?? ?????????????????????????????????????????? (?? )?=?? (?? +?? ?? ????
)=??
8
?? =0
??? ?? ?? ?? ?? ?????? ?????????????????????????????????????????? (?? )
¯¯¯¯¯¯
?=??
8
?? =0
????
?? ?? ?? ?? -?????? ??????????????
1
2????
??
?? ?
?? (?? )
¯¯¯¯¯¯
(?? -?? )
2
???? ?=
1
2????
? ?
2?? 0
?
S???
?? ?? ?? ?? -??????
?? 2
?? ??2?? ·???? ?? ????
????
=
1
2?? ? ???
?? ?? ?? -1
?
0
2?? ??? -?? (?? +1)????
???? =0
From (i) and (ii), we have
?? (?? )=
1
2????
??
?? ?
?? (?? )?? +?? (?? )
¯¯¯¯¯¯
(?? -?? )
2
????
?=
1
????
? ?
2?? 0
?
real part of ?? (???+?? ?? ????
)???? ?? ????
????
?? 2
?? ??2?? ?[??? =?? +?? ?? ????
]
?=
1
????
? ?
2?? 0
??? (?? )?? -????
???? , where ?? (?? ) is the real part of ?? (?? +?? ?? ????
)
2.2 Describe the maximal ideals in the ring of Gaussian integers ?? [?? ]={?? +???? |
?? ,?? ??? } .
(2012: 20 Marks)
Solution:
Let us define
?? (?? +???? )?=|?? +???? |
2
=?? 2
+?? 2
for all ?? +???? ??? [??]
?? (?? )?=?? (?? +???? )=?? 2
+?? 2
>0 for all ?? ?0 in ?? [??]
Again for any ?? ,?? ??? [??]
?? (???? )=|?? |
2
|?? 2
=|?? |
2
=?? (?? )
Let ?? ,?? ??? [??],?? ?0
Then,????????????????????????? =?? +???? ,?? =?? +???? ,?? ,?? ,?? ,?? ??? and (?? ,?? )?(0,0)
???????????????????????????????
?? ?? =
?? +????
?? +????
=
(?? +???? )
(?? +???? )
×
?? +????
?? +????
=
(?? +???? )(?? +???? )
?? 2
+?? 2
=?? +???? (say)
where ?? and ?? are rational numbers. Then we can find integers ?? and ?? such that |?? -
?? |=
1
2
and |?? -?? |=
1
2
.
? ??????????? =(?? +???? )?? =(?? +???? )?? +[(?? -?? )+??(?? -?? )]?? ? Now ???????? ?[(?? -?? )+??(?? -?? )]?? =[(?? +???? )-(?? +???? )]?? ???????? ?=(?? +???? )?? -(?? +???? )?? ???????? ?? -(?? +???? )?? ??? [??]
as ?? [??] is a ring and ?? ,?? ,?? +???? ??? [??]
Let
?? ?=[(?? -?? )+??(?? -?? )]?? ?? (?? )?=|?? 2
=[(?? -?? )
2
+(?? -?? )
2
]|?? 2
?=(
1
4
+
1
4
)|?? |
2
Taking ?? =?? +???? , we have,
?? =???? +?? ? (using (i) and (ii))
where either ?? =0 or ?? (?? )<?? (?? )
Hence, ?? [??] is a Euclidean domain.
As every Euclidean domain is a principal ideal domain (PID).
Page 3
Edurev123
2. Taylor's Series
2.1 If the function ?? (?? ) is analytic and one valued in |?? -?? |<?? , prove that for ?? <
?? <?? ,?? '
(?? ) =
?? ????
?
?? ?? ?? ??? (?? )?? -????
???? , where ?? (?? ) is the real part of ?? (?? +?? ?? ????
) .
(2011: 15 marks)
Solution:
The function ?? (?? ) is given to be analytic in |?? -?? |<?? and ?? <?? , therefore ?? (?? ) is also
analytic inside the circle ?? defined by |?? -?? |=?? .
???? '
(?? )=
1
2????
??
?? ?
?? (?? )
(?? -?? )
2
???? (??)
Expanding ?? (?? ) in a Taylor's series about ?? =?? , we have
?? (?? )?=??
8
?? =0
??? ?? (?? -?? )
?? ?????????????????????????????????????????? (?? )?=?? (?? +?? ?? ????
)=??
8
?? =0
??? ?? ?? ?? ?? ?????? ?????????????????????????????????????????? (?? )
¯¯¯¯¯¯
?=??
8
?? =0
????
?? ?? ?? ?? -?????? ??????????????
1
2????
??
?? ?
?? (?? )
¯¯¯¯¯¯
(?? -?? )
2
???? ?=
1
2????
? ?
2?? 0
?
S???
?? ?? ?? ?? -??????
?? 2
?? ??2?? ·???? ?? ????
????
=
1
2?? ? ???
?? ?? ?? -1
?
0
2?? ??? -?? (?? +1)????
???? =0
From (i) and (ii), we have
?? (?? )=
1
2????
??
?? ?
?? (?? )?? +?? (?? )
¯¯¯¯¯¯
(?? -?? )
2
????
?=
1
????
? ?
2?? 0
?
real part of ?? (???+?? ?? ????
)???? ?? ????
????
?? 2
?? ??2?? ?[??? =?? +?? ?? ????
]
?=
1
????
? ?
2?? 0
??? (?? )?? -????
???? , where ?? (?? ) is the real part of ?? (?? +?? ?? ????
)
2.2 Describe the maximal ideals in the ring of Gaussian integers ?? [?? ]={?? +???? |
?? ,?? ??? } .
(2012: 20 Marks)
Solution:
Let us define
?? (?? +???? )?=|?? +???? |
2
=?? 2
+?? 2
for all ?? +???? ??? [??]
?? (?? )?=?? (?? +???? )=?? 2
+?? 2
>0 for all ?? ?0 in ?? [??]
Again for any ?? ,?? ??? [??]
?? (???? )=|?? |
2
|?? 2
=|?? |
2
=?? (?? )
Let ?? ,?? ??? [??],?? ?0
Then,????????????????????????? =?? +???? ,?? =?? +???? ,?? ,?? ,?? ,?? ??? and (?? ,?? )?(0,0)
???????????????????????????????
?? ?? =
?? +????
?? +????
=
(?? +???? )
(?? +???? )
×
?? +????
?? +????
=
(?? +???? )(?? +???? )
?? 2
+?? 2
=?? +???? (say)
where ?? and ?? are rational numbers. Then we can find integers ?? and ?? such that |?? -
?? |=
1
2
and |?? -?? |=
1
2
.
? ??????????? =(?? +???? )?? =(?? +???? )?? +[(?? -?? )+??(?? -?? )]?? ? Now ???????? ?[(?? -?? )+??(?? -?? )]?? =[(?? +???? )-(?? +???? )]?? ???????? ?=(?? +???? )?? -(?? +???? )?? ???????? ?? -(?? +???? )?? ??? [??]
as ?? [??] is a ring and ?? ,?? ,?? +???? ??? [??]
Let
?? ?=[(?? -?? )+??(?? -?? )]?? ?? (?? )?=|?? 2
=[(?? -?? )
2
+(?? -?? )
2
]|?? 2
?=(
1
4
+
1
4
)|?? |
2
Taking ?? =?? +???? , we have,
?? =???? +?? ? (using (i) and (ii))
where either ?? =0 or ?? (?? )<?? (?? )
Hence, ?? [??] is a Euclidean domain.
As every Euclidean domain is a principal ideal domain (PID).
??? [??] is PID.
But in a PID, every non-zero not unit element ?? is prime element iff <?? > is a maximal
ideal.
? Maximal ideals in ???? ] are the ideals generated by prime elements.
2.3 For a function ?? .??Ø
'
arid ?? =?? , let fn denote the ?? th
derivative of ?? and
?? (?? )=?? . Let ?? be an entire function such that for some ?? =?? ,?? ?? (
?? ?? )=?? for all ?? =
?? ,?? ,?? ,…. Show that ?? is a polynomial.
(2017 : 15 Marks)
Solution:
Since ?? (?? ) is entire, ??? (?? ) is analytic. Hence, ?? (?? ) can be expressed as Taylor's series
around ?? =0 as
?? (?? )=???
8
?? =1
??? ?? 1
?? ?? + ??
8
?? =0
??? ?? ?? ?? ?? ?? (?? )=???
8
?? =1
?(-1)
?? (?? )(?? +1)…..(?? +(?? -1))?? -?? 1
?? ?? +?? +
???
8
?? =?? ?(?? )(?? -1)…..(?? -(?? -1))?? ?? ?? ?? -?? ?? ?? (
1
?? )=???
8
?? =1
?(-1)
?? (?? )(?? +1)…..(?? +(?? -1))?? -?? ·?? ?? +?? +
???
8
?? =?? ??? (?? -1)….(?? -?? +1)?? ?? (
1
?? )
?? -??
Now,
As ?? ?? (
1
?? )?0 for all ?? =1,2,3,…
Let us take ?? ?8
We get ?? -?? ?0 and ?? ?? =0
Similarly, if we take ?? +??,?? ?? +1
=0
????? ?? =?? ?? +1
=?? ?? +2
=?…=0
????? (?? )=?? 0
+?? 1
?? +?? 2
?? 2
+?.+?? ?? -1
?? ?? -1
which is a polynomial function.
Page 4
Edurev123
2. Taylor's Series
2.1 If the function ?? (?? ) is analytic and one valued in |?? -?? |<?? , prove that for ?? <
?? <?? ,?? '
(?? ) =
?? ????
?
?? ?? ?? ??? (?? )?? -????
???? , where ?? (?? ) is the real part of ?? (?? +?? ?? ????
) .
(2011: 15 marks)
Solution:
The function ?? (?? ) is given to be analytic in |?? -?? |<?? and ?? <?? , therefore ?? (?? ) is also
analytic inside the circle ?? defined by |?? -?? |=?? .
???? '
(?? )=
1
2????
??
?? ?
?? (?? )
(?? -?? )
2
???? (??)
Expanding ?? (?? ) in a Taylor's series about ?? =?? , we have
?? (?? )?=??
8
?? =0
??? ?? (?? -?? )
?? ?????????????????????????????????????????? (?? )?=?? (?? +?? ?? ????
)=??
8
?? =0
??? ?? ?? ?? ?? ?????? ?????????????????????????????????????????? (?? )
¯¯¯¯¯¯
?=??
8
?? =0
????
?? ?? ?? ?? -?????? ??????????????
1
2????
??
?? ?
?? (?? )
¯¯¯¯¯¯
(?? -?? )
2
???? ?=
1
2????
? ?
2?? 0
?
S???
?? ?? ?? ?? -??????
?? 2
?? ??2?? ·???? ?? ????
????
=
1
2?? ? ???
?? ?? ?? -1
?
0
2?? ??? -?? (?? +1)????
???? =0
From (i) and (ii), we have
?? (?? )=
1
2????
??
?? ?
?? (?? )?? +?? (?? )
¯¯¯¯¯¯
(?? -?? )
2
????
?=
1
????
? ?
2?? 0
?
real part of ?? (???+?? ?? ????
)???? ?? ????
????
?? 2
?? ??2?? ?[??? =?? +?? ?? ????
]
?=
1
????
? ?
2?? 0
??? (?? )?? -????
???? , where ?? (?? ) is the real part of ?? (?? +?? ?? ????
)
2.2 Describe the maximal ideals in the ring of Gaussian integers ?? [?? ]={?? +???? |
?? ,?? ??? } .
(2012: 20 Marks)
Solution:
Let us define
?? (?? +???? )?=|?? +???? |
2
=?? 2
+?? 2
for all ?? +???? ??? [??]
?? (?? )?=?? (?? +???? )=?? 2
+?? 2
>0 for all ?? ?0 in ?? [??]
Again for any ?? ,?? ??? [??]
?? (???? )=|?? |
2
|?? 2
=|?? |
2
=?? (?? )
Let ?? ,?? ??? [??],?? ?0
Then,????????????????????????? =?? +???? ,?? =?? +???? ,?? ,?? ,?? ,?? ??? and (?? ,?? )?(0,0)
???????????????????????????????
?? ?? =
?? +????
?? +????
=
(?? +???? )
(?? +???? )
×
?? +????
?? +????
=
(?? +???? )(?? +???? )
?? 2
+?? 2
=?? +???? (say)
where ?? and ?? are rational numbers. Then we can find integers ?? and ?? such that |?? -
?? |=
1
2
and |?? -?? |=
1
2
.
? ??????????? =(?? +???? )?? =(?? +???? )?? +[(?? -?? )+??(?? -?? )]?? ? Now ???????? ?[(?? -?? )+??(?? -?? )]?? =[(?? +???? )-(?? +???? )]?? ???????? ?=(?? +???? )?? -(?? +???? )?? ???????? ?? -(?? +???? )?? ??? [??]
as ?? [??] is a ring and ?? ,?? ,?? +???? ??? [??]
Let
?? ?=[(?? -?? )+??(?? -?? )]?? ?? (?? )?=|?? 2
=[(?? -?? )
2
+(?? -?? )
2
]|?? 2
?=(
1
4
+
1
4
)|?? |
2
Taking ?? =?? +???? , we have,
?? =???? +?? ? (using (i) and (ii))
where either ?? =0 or ?? (?? )<?? (?? )
Hence, ?? [??] is a Euclidean domain.
As every Euclidean domain is a principal ideal domain (PID).
??? [??] is PID.
But in a PID, every non-zero not unit element ?? is prime element iff <?? > is a maximal
ideal.
? Maximal ideals in ???? ] are the ideals generated by prime elements.
2.3 For a function ?? .??Ø
'
arid ?? =?? , let fn denote the ?? th
derivative of ?? and
?? (?? )=?? . Let ?? be an entire function such that for some ?? =?? ,?? ?? (
?? ?? )=?? for all ?? =
?? ,?? ,?? ,…. Show that ?? is a polynomial.
(2017 : 15 Marks)
Solution:
Since ?? (?? ) is entire, ??? (?? ) is analytic. Hence, ?? (?? ) can be expressed as Taylor's series
around ?? =0 as
?? (?? )=???
8
?? =1
??? ?? 1
?? ?? + ??
8
?? =0
??? ?? ?? ?? ?? ?? (?? )=???
8
?? =1
?(-1)
?? (?? )(?? +1)…..(?? +(?? -1))?? -?? 1
?? ?? +?? +
???
8
?? =?? ?(?? )(?? -1)…..(?? -(?? -1))?? ?? ?? ?? -?? ?? ?? (
1
?? )=???
8
?? =1
?(-1)
?? (?? )(?? +1)…..(?? +(?? -1))?? -?? ·?? ?? +?? +
???
8
?? =?? ??? (?? -1)….(?? -?? +1)?? ?? (
1
?? )
?? -??
Now,
As ?? ?? (
1
?? )?0 for all ?? =1,2,3,…
Let us take ?? ?8
We get ?? -?? ?0 and ?? ?? =0
Similarly, if we take ?? +??,?? ?? +1
=0
????? ?? =?? ?? +1
=?? ?? +2
=?…=0
????? (?? )=?? 0
+?? 1
?? +?? 2
?? 2
+?.+?? ?? -1
?? ?? -1
which is a polynomial function.
2.4 Show that an isolated singular point ?? ?? of a function ?? (?? ) is a pole of order ?? if
and only if ?? (?? ) can be written in the form ?? (?? )=
???
(?? )
(?? -?? ?? )
?? where ?? (?? ) is analytic and
non-zero at ?? ?? .
Moreover
?????? ?? =?? ?? ??? (?? )=
?? (?? -?? )
(?? ?? )
(?? -?? )!
if ?? =??
(2019 : 15 Marks)
Solution:
Since ?? (?? ) has a pole of order, ?? , then by definition, for 0<|?? -?? 0
|<?? .
?? (?? )=??
8
?? =0
??? ?? (?? -?? 0
)
?? +
?? 2
?? -?? 0
+
?? 2
(?? -?? 0
)
2
+
?? ?? (?? -?? 0
)
?? ,?? ?? +0
???? (?? )=
1
(?? -?? 0
)
?? [??
8
?? =0
??? ?? (?? -?? 0
)
?? +?? +?? 1
(?? -?? 0
)
?? -1
+?? 2
(?? -?? 0
)
?? -2
+?? 2
(?? -?? 0
)
?? -2
+?? ?? ]
????? (?? )=
???(?? )
(?? -?? 0
)
??
Clearly, ?? (?? 0
)=?? ?? ?0 and is analytic at ?? 0
, as it has Taylor series expansion about ?? 0
.
Conversely, suppose ?? (?? ) can be written in the form:
?? (?? )=
?? (?? )
(?? -?? 0
)
?? , then
?? ?
(?? )=?? (?? 0
)+?? (?? 0
)(?? -?? 0
)+
?? ?? (?? 0
)
2!
(?? -?? 0
)
2
+?.+
?? (?? -1)
(?? 0
)
(?? -1)!
(?? -?? 0
)
?? -1
+?.
Since,
?? (?? ) has a pole of order ?? .
?? (?? 0
)?0
With residue,
?? 1
=
?? (?? -1)
(?? 0
)
(?? -1)!
In case of simple pole, i.e., ?? -1,
Res??? =?? 0
,?? (?? 0
)=?? (?? 0
) . Hence, proved.
Page 5
Edurev123
2. Taylor's Series
2.1 If the function ?? (?? ) is analytic and one valued in |?? -?? |<?? , prove that for ?? <
?? <?? ,?? '
(?? ) =
?? ????
?
?? ?? ?? ??? (?? )?? -????
???? , where ?? (?? ) is the real part of ?? (?? +?? ?? ????
) .
(2011: 15 marks)
Solution:
The function ?? (?? ) is given to be analytic in |?? -?? |<?? and ?? <?? , therefore ?? (?? ) is also
analytic inside the circle ?? defined by |?? -?? |=?? .
???? '
(?? )=
1
2????
??
?? ?
?? (?? )
(?? -?? )
2
???? (??)
Expanding ?? (?? ) in a Taylor's series about ?? =?? , we have
?? (?? )?=??
8
?? =0
??? ?? (?? -?? )
?? ?????????????????????????????????????????? (?? )?=?? (?? +?? ?? ????
)=??
8
?? =0
??? ?? ?? ?? ?? ?????? ?????????????????????????????????????????? (?? )
¯¯¯¯¯¯
?=??
8
?? =0
????
?? ?? ?? ?? -?????? ??????????????
1
2????
??
?? ?
?? (?? )
¯¯¯¯¯¯
(?? -?? )
2
???? ?=
1
2????
? ?
2?? 0
?
S???
?? ?? ?? ?? -??????
?? 2
?? ??2?? ·???? ?? ????
????
=
1
2?? ? ???
?? ?? ?? -1
?
0
2?? ??? -?? (?? +1)????
???? =0
From (i) and (ii), we have
?? (?? )=
1
2????
??
?? ?
?? (?? )?? +?? (?? )
¯¯¯¯¯¯
(?? -?? )
2
????
?=
1
????
? ?
2?? 0
?
real part of ?? (???+?? ?? ????
)???? ?? ????
????
?? 2
?? ??2?? ?[??? =?? +?? ?? ????
]
?=
1
????
? ?
2?? 0
??? (?? )?? -????
???? , where ?? (?? ) is the real part of ?? (?? +?? ?? ????
)
2.2 Describe the maximal ideals in the ring of Gaussian integers ?? [?? ]={?? +???? |
?? ,?? ??? } .
(2012: 20 Marks)
Solution:
Let us define
?? (?? +???? )?=|?? +???? |
2
=?? 2
+?? 2
for all ?? +???? ??? [??]
?? (?? )?=?? (?? +???? )=?? 2
+?? 2
>0 for all ?? ?0 in ?? [??]
Again for any ?? ,?? ??? [??]
?? (???? )=|?? |
2
|?? 2
=|?? |
2
=?? (?? )
Let ?? ,?? ??? [??],?? ?0
Then,????????????????????????? =?? +???? ,?? =?? +???? ,?? ,?? ,?? ,?? ??? and (?? ,?? )?(0,0)
???????????????????????????????
?? ?? =
?? +????
?? +????
=
(?? +???? )
(?? +???? )
×
?? +????
?? +????
=
(?? +???? )(?? +???? )
?? 2
+?? 2
=?? +???? (say)
where ?? and ?? are rational numbers. Then we can find integers ?? and ?? such that |?? -
?? |=
1
2
and |?? -?? |=
1
2
.
? ??????????? =(?? +???? )?? =(?? +???? )?? +[(?? -?? )+??(?? -?? )]?? ? Now ???????? ?[(?? -?? )+??(?? -?? )]?? =[(?? +???? )-(?? +???? )]?? ???????? ?=(?? +???? )?? -(?? +???? )?? ???????? ?? -(?? +???? )?? ??? [??]
as ?? [??] is a ring and ?? ,?? ,?? +???? ??? [??]
Let
?? ?=[(?? -?? )+??(?? -?? )]?? ?? (?? )?=|?? 2
=[(?? -?? )
2
+(?? -?? )
2
]|?? 2
?=(
1
4
+
1
4
)|?? |
2
Taking ?? =?? +???? , we have,
?? =???? +?? ? (using (i) and (ii))
where either ?? =0 or ?? (?? )<?? (?? )
Hence, ?? [??] is a Euclidean domain.
As every Euclidean domain is a principal ideal domain (PID).
??? [??] is PID.
But in a PID, every non-zero not unit element ?? is prime element iff <?? > is a maximal
ideal.
? Maximal ideals in ???? ] are the ideals generated by prime elements.
2.3 For a function ?? .??Ø
'
arid ?? =?? , let fn denote the ?? th
derivative of ?? and
?? (?? )=?? . Let ?? be an entire function such that for some ?? =?? ,?? ?? (
?? ?? )=?? for all ?? =
?? ,?? ,?? ,…. Show that ?? is a polynomial.
(2017 : 15 Marks)
Solution:
Since ?? (?? ) is entire, ??? (?? ) is analytic. Hence, ?? (?? ) can be expressed as Taylor's series
around ?? =0 as
?? (?? )=???
8
?? =1
??? ?? 1
?? ?? + ??
8
?? =0
??? ?? ?? ?? ?? ?? (?? )=???
8
?? =1
?(-1)
?? (?? )(?? +1)…..(?? +(?? -1))?? -?? 1
?? ?? +?? +
???
8
?? =?? ?(?? )(?? -1)…..(?? -(?? -1))?? ?? ?? ?? -?? ?? ?? (
1
?? )=???
8
?? =1
?(-1)
?? (?? )(?? +1)…..(?? +(?? -1))?? -?? ·?? ?? +?? +
???
8
?? =?? ??? (?? -1)….(?? -?? +1)?? ?? (
1
?? )
?? -??
Now,
As ?? ?? (
1
?? )?0 for all ?? =1,2,3,…
Let us take ?? ?8
We get ?? -?? ?0 and ?? ?? =0
Similarly, if we take ?? +??,?? ?? +1
=0
????? ?? =?? ?? +1
=?? ?? +2
=?…=0
????? (?? )=?? 0
+?? 1
?? +?? 2
?? 2
+?.+?? ?? -1
?? ?? -1
which is a polynomial function.
2.4 Show that an isolated singular point ?? ?? of a function ?? (?? ) is a pole of order ?? if
and only if ?? (?? ) can be written in the form ?? (?? )=
???
(?? )
(?? -?? ?? )
?? where ?? (?? ) is analytic and
non-zero at ?? ?? .
Moreover
?????? ?? =?? ?? ??? (?? )=
?? (?? -?? )
(?? ?? )
(?? -?? )!
if ?? =??
(2019 : 15 Marks)
Solution:
Since ?? (?? ) has a pole of order, ?? , then by definition, for 0<|?? -?? 0
|<?? .
?? (?? )=??
8
?? =0
??? ?? (?? -?? 0
)
?? +
?? 2
?? -?? 0
+
?? 2
(?? -?? 0
)
2
+
?? ?? (?? -?? 0
)
?? ,?? ?? +0
???? (?? )=
1
(?? -?? 0
)
?? [??
8
?? =0
??? ?? (?? -?? 0
)
?? +?? +?? 1
(?? -?? 0
)
?? -1
+?? 2
(?? -?? 0
)
?? -2
+?? 2
(?? -?? 0
)
?? -2
+?? ?? ]
????? (?? )=
???(?? )
(?? -?? 0
)
??
Clearly, ?? (?? 0
)=?? ?? ?0 and is analytic at ?? 0
, as it has Taylor series expansion about ?? 0
.
Conversely, suppose ?? (?? ) can be written in the form:
?? (?? )=
?? (?? )
(?? -?? 0
)
?? , then
?? ?
(?? )=?? (?? 0
)+?? (?? 0
)(?? -?? 0
)+
?? ?? (?? 0
)
2!
(?? -?? 0
)
2
+?.+
?? (?? -1)
(?? 0
)
(?? -1)!
(?? -?? 0
)
?? -1
+?.
Since,
?? (?? ) has a pole of order ?? .
?? (?? 0
)?0
With residue,
?? 1
=
?? (?? -1)
(?? 0
)
(?? -1)!
In case of simple pole, i.e., ?? -1,
Res??? =?? 0
,?? (?? 0
)=?? (?? 0
) . Hence, proved.
2.5 Find the Laurent series expansion of ?? (?? )=
?? ?? -?? +?? ?? (?? ?? -?? ?? +?? )
in the powers of (?? +?? ) in
the region |?? +?? |>?? .
[2021 : 20 marks]
Solution:
?? (?? )=
?? 2
-?? +1
?? (?? 2
-3?? +2)
Let ?? +1=?? , then ?? =?? -1
?? (?? )=
(?? -1)
2
-(?? -1)+1
(?? -1)[(?? -1)
2
-3(?? -1)+2]
? ?? (?? )=
?? 2
+1-2?? -?? +1+1
(?? -1)[?? 2
+1-2?? -3?? +3+2]
???????????????????????????????????????? (?? )=
?? 2
-3?? +3
(?? -1)(?? 2
-5?? +6)
?????????????????????????????????????????????? (?? )=
?? 2
-3?? +3
(?? -1)(?? -2)(?? -3)
????????????????????????????????????????????????????=
?? ?? -1
+
?? ?? -2
+
?? ?? -3
?????????????????????????????????????????????????????(1)
?????????????????????? 2
-3?? +3=?? (?? -2)(?? -3)+?? (?? -1)(?? -3)+?? (?? -1)(?? -2)
if ?? =2, then, ?4-6+3=?? (1)(-1)
????? =-1
if ?? =1, then, ?1-3+3=?? (-1)(-2)
????? =
1
2
if ?? =3, then, ?9-9+3=?? (2)(1)
????? =
3
2
?? (?? )=
1
2
?? -1
+
-1
?? -2
+
3
2
?? -3
Corresponding to
1
?? -1
:
1
?? -1
=
1
?? (1-
1
?? )
-1
=
1
?? (1+
1
?? +
1
?? 2
+?.) is valid for |
1
?? |<1 and |?? |>0.
1
?? -1
=
1
?? +
1
?? 2
+
1
?? 3
+?. is valid for |?? |>1
Corresponding to
1
?? -2
:
Read More