Theory & Procedure, Kinetic Study on the Reaction between Iodide Ions and Hydrogen Peroxide Class 12 Notes | EduRev

Chemistry Class 12

Created by: Mohit Rajpoot

Class 12 : Theory & Procedure, Kinetic Study on the Reaction between Iodide Ions and Hydrogen Peroxide Class 12 Notes | EduRev

The document Theory & Procedure, Kinetic Study on the Reaction between Iodide Ions and Hydrogen Peroxide Class 12 Notes | EduRev is a part of the Class 12 Course Chemistry Class 12.
All you need of Class 12 at this link: Class 12

Objective

Our objective is to study the reaction rate of the reaction of iodide ions with hydrogen peroxide at different concentrations of iodide ions.

The Theory

What is Chemical Kinetics?

The branch of chemistry that deals with the study of reaction rates and their mechanisms is called chemical kinetics. Kinetic studies also helps to describe the conditions by which the reaction rate can be altered. Factors such as temperature, concentration, pressure and catalyst affect the rate of a chemical reaction.

Some reactions, such as ionic reactions, occur very quickly. For example, precipitation of silver chloride occurs very quickly when aqueous solutions of silver nitrate and sodium chloride are mixed. On the other hand, some reactions occur very slowly, such as the rusting of iron in the presence of air and moisture.

What does the change in the concentration of a reactant mean?

The speed of a reaction or the rate of a reaction is defined as the change in concentration of a reactant or product in unit time. It can be expressed as, the rate of decrease in concentration of any one of the reactants or the rate of increase in concentration of anyone of the products.

Consider the reaction,

«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi mathvariant=¨normal¨»R«/mi»«mo»§nbsp;«/mo»«mo»§#8594;«/mo»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»P«/mi»«/math»

Assuming that the volume of the system remains constant, one mole of the reactant produces one mole of the product. If [R1] and [P1] are the concentrations of R and P respectively at time t1 and [R2] and [P2] are the concentrations of R and P respectively at time t2, then,

 «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mtable columnalign=¨left¨ rowspacing=¨0¨»«mtr»«mtd»«mi mathvariant=¨normal¨»The«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»decrease«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»in«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»the«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»concentration«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»of«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»the«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»reac«/mi»«mi mathvariant=¨normal¨»tan«/mi»«mi mathvariant=¨normal¨»t«/mi»«mo»,«/mo»«mo»§nbsp;«/mo»«mo»§#9651;«/mo»«mi mathvariant=¨normal¨»R«/mi»«mo»§nbsp;«/mo»«mo»=«/mo»«mo»§nbsp;«/mo»«msub»«mi mathvariant=¨normal¨»R«/mi»«mn»2«/mn»«/msub»«mo»§nbsp;«/mo»«mo»-«/mo»«mo»§nbsp;«/mo»«msub»«mi mathvariant=¨normal¨»R«/mi»«mn»1«/mn»«/msub»«/mtd»«/mtr»«mtr»«mtd»«mi mathvariant=¨normal¨»The«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»increase«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»in«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»the«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»concentration«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»of«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»the«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»product«/mi»«mo»,«/mo»«mo»§nbsp;«/mo»«mo»§#9651;«/mo»«mi mathvariant=¨normal¨»P«/mi»«mo»§nbsp;«/mo»«mo»=«/mo»«mo»§nbsp;«/mo»«msub»«mi mathvariant=¨normal¨»P«/mi»«mn»2«/mn»«/msub»«mo»§nbsp;«/mo»«mo»-«/mo»«mo»§nbsp;«/mo»«msub»«mi mathvariant=¨normal¨»P«/mi»«mn»1«/mn»«/msub»«/mtd»«/mtr»«mtr»«mtd»«mi mathvariant=¨normal¨»Time«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»taken«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»for«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»the«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»reaction«/mi»«mo»,«/mo»«mo»§nbsp;«/mo»«mo»§#9651;«/mo»«mi mathvariant=¨normal¨»t«/mi»«mo»§nbsp;«/mo»«mo»=«/mo»«mo»§nbsp;«/mo»«msub»«mi mathvariant=¨normal¨»t«/mi»«mn»2«/mn»«/msub»«mo»§nbsp;«/mo»«mo»-«/mo»«mo»§nbsp;«/mo»«msub»«mi mathvariant=¨normal¨»t«/mi»«mn»1«/mn»«/msub»«/mtd»«/mtr»«/mtable»«/math»

 «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi mathvariant=¨normal¨»Rate«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»of«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»disappearance«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»of«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»R«/mi»«mo»§nbsp;«/mo»«mo»=«/mo»«mo»§nbsp;«/mo»«mfrac»«mrow»«mi mathvariant=¨normal¨»D«/mi»«mi mathvariant=¨normal¨»e«/mi»«mi mathvariant=¨normal¨»c«/mi»«mi mathvariant=¨normal¨»r«/mi»«mi mathvariant=¨normal¨»e«/mi»«mi mathvariant=¨normal¨»a«/mi»«mi mathvariant=¨normal¨»s«/mi»«mi mathvariant=¨normal¨»e«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»i«/mi»«mi mathvariant=¨normal¨»n«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»c«/mi»«mi mathvariant=¨normal¨»o«/mi»«mi mathvariant=¨normal¨»n«/mi»«mi mathvariant=¨normal¨»c«/mi»«mi mathvariant=¨normal¨»e«/mi»«mi mathvariant=¨normal¨»n«/mi»«mi mathvariant=¨normal¨»t«/mi»«mi mathvariant=¨normal¨»r«/mi»«mi mathvariant=¨normal¨»a«/mi»«mi mathvariant=¨normal¨»t«/mi»«mi mathvariant=¨normal¨»i«/mi»«mi mathvariant=¨normal¨»o«/mi»«mi mathvariant=¨normal¨»n«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»o«/mi»«mi mathvariant=¨normal¨»f«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»R«/mi»«/mrow»«mrow»«mi mathvariant=¨normal¨»T«/mi»«mi mathvariant=¨normal¨»i«/mi»«mi mathvariant=¨normal¨»m«/mi»«mi mathvariant=¨normal¨»e«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»t«/mi»«mi mathvariant=¨normal¨»a«/mi»«mi mathvariant=¨normal¨»k«/mi»«mi mathvariant=¨normal¨»e«/mi»«mi mathvariant=¨normal¨»n«/mi»«/mrow»«/mfrac»«mo»§nbsp;«/mo»«mo»=«/mo»«mo»§nbsp;«/mo»«mo»-«/mo»«mfrac»«mrow»«mo»§#9651;«/mo»«mi mathvariant=¨normal¨»R«/mi»«/mrow»«mrow»«mo»§#9651;«/mo»«mi mathvariant=¨normal¨»t«/mi»«/mrow»«/mfrac»«/math»

«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi mathvariant=¨normal¨»Rate«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»of«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»appearance«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»of«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»P«/mi»«mo»§nbsp;«/mo»«mo»=«/mo»«mo»§nbsp;«/mo»«mfrac»«mrow»«mi mathvariant=¨normal¨»I«/mi»«mi mathvariant=¨normal¨»n«/mi»«mi mathvariant=¨normal¨»c«/mi»«mi mathvariant=¨normal¨»r«/mi»«mi mathvariant=¨normal¨»e«/mi»«mi mathvariant=¨normal¨»a«/mi»«mi mathvariant=¨normal¨»s«/mi»«mi mathvariant=¨normal¨»e«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»i«/mi»«mi mathvariant=¨normal¨»n«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»c«/mi»«mi mathvariant=¨normal¨»o«/mi»«mi mathvariant=¨normal¨»n«/mi»«mi mathvariant=¨normal¨»c«/mi»«mi mathvariant=¨normal¨»e«/mi»«mi mathvariant=¨normal¨»n«/mi»«mi mathvariant=¨normal¨»t«/mi»«mi mathvariant=¨normal¨»r«/mi»«mi mathvariant=¨normal¨»a«/mi»«mi mathvariant=¨normal¨»t«/mi»«mi mathvariant=¨normal¨»i«/mi»«mi mathvariant=¨normal¨»o«/mi»«mi mathvariant=¨normal¨»n«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»o«/mi»«mi mathvariant=¨normal¨»f«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»P«/mi»«/mrow»«mrow»«mi mathvariant=¨normal¨»T«/mi»«mi mathvariant=¨normal¨»i«/mi»«mi mathvariant=¨normal¨»m«/mi»«mi mathvariant=¨normal¨»e«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»t«/mi»«mi mathvariant=¨normal¨»a«/mi»«mi mathvariant=¨normal¨»k«/mi»«mi mathvariant=¨normal¨»e«/mi»«mi mathvariant=¨normal¨»n«/mi»«/mrow»«/mfrac»«mo»§nbsp;«/mo»«mo»=«/mo»«mo»§nbsp;«/mo»«mo»+«/mo»«mfrac»«mrow»«mo»§#9651;«/mo»«mi mathvariant=¨normal¨»P«/mi»«/mrow»«mrow»«mo»§#9651;«/mo»«mi mathvariant=¨normal¨»t«/mi»«/mrow»«/mfrac»«/math»

«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi mathvariant=¨normal¨»Therefore«/mi»«mo»,«/mo»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»the«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»rate«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»of«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»the«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»reaction«/mi»«mo»§nbsp;«/mo»«mo»=«/mo»«mo»§nbsp;«/mo»«mo»-«/mo»«mfrac»«mrow»«mo»§#9651;«/mo»«mi mathvariant=¨normal¨»R«/mi»«/mrow»«mrow»«mo»§#9651;«/mo»«mi mathvariant=¨normal¨»t«/mi»«/mrow»«/mfrac»«mo»§nbsp;«/mo»«mo»=«/mo»«mo»§nbsp;«/mo»«mo»+«/mo»«mfrac»«mrow»«mo»§#9651;«/mo»«mi mathvariant=¨normal¨»P«/mi»«/mrow»«mrow»«mo»§#9651;«/mo»«mi mathvariant=¨normal¨»t«/mi»«/mrow»«/mfrac»«/math»

Dependence of the reactant concentration on the rate of the chemical reaction

Let us understand the dependence of the reactant concentration on the rate of chemical reaction by studying the reaction between iodide ions and sodium thiosulphate in the presence of hydrogen peroxide.

Hydrogen peroxide is an oxidising agent that oxidises iodide ions to iodine in acidic medium.

«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msub»«mi mathvariant=¨normal¨»H«/mi»«mn»2«/mn»«/msub»«msub»«mi mathvariant=¨normal¨»O«/mi»«mn»2«/mn»«/msub»«mo»§nbsp;«/mo»«mo»+«/mo»«mo»§nbsp;«/mo»«mn»2«/mn»«msup»«mi mathvariant=¨normal¨»I«/mi»«mo»-«/mo»«/msup»«mo»§nbsp;«/mo»«mo»+«/mo»«mo»§nbsp;«/mo»«mn»2«/mn»«msup»«mi mathvariant=¨normal¨»H«/mi»«mo»+«/mo»«/msup»«mo»§nbsp;«/mo»«mo»§#8594;«/mo»«mo»§nbsp;«/mo»«mn»2«/mn»«msub»«mi mathvariant=¨normal¨»H«/mi»«mn»2«/mn»«/msub»«mi mathvariant=¨normal¨»O«/mi»«mo»§nbsp;«/mo»«mo»+«/mo»«mo»§nbsp;«/mo»«msub»«mi mathvariant=¨normal¨»I«/mi»«mn»2«/mn»«/msub»«/math»

The reaction is monitored by adding a known volume of sodium thiosulphate solution and starch solution to the reaction mixture. The liberated iodine reacts with sodium thiosulphate and reduces to iodide ions.

«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msub»«mi mathvariant=¨normal¨»I«/mi»«mn»2«/mn»«/msub»«mo»§nbsp;«/mo»«mo»+«/mo»«mo»§nbsp;«/mo»«mn»2«/mn»«msub»«mi mathvariant=¨normal¨»S«/mi»«mn»2«/mn»«/msub»«msup»«msub»«mi mathvariant=¨normal¨»O«/mi»«mn»3«/mn»«/msub»«mrow»«mn»2«/mn»«mo»-«/mo»«/mrow»«/msup»«mo»§nbsp;«/mo»«mo»§#8594;«/mo»«mo»§nbsp;«/mo»«msub»«mi mathvariant=¨normal¨»S«/mi»«mn»4«/mn»«/msub»«msup»«msub»«mi mathvariant=¨normal¨»O«/mi»«mn»6«/mn»«/msub»«mrow»«mn»2«/mn»«mo»-«/mo»«/mrow»«/msup»«mo»§nbsp;«/mo»«mo»+«/mo»«mo»§nbsp;«/mo»«mn»2«/mn»«msup»«mi mathvariant=¨normal¨»I«/mi»«mo»-«/mo»«/msup»«/math»

When thiosulphate ions are completely consumed, the liberated iodine reacts with starch solution and gives a blue colour.

«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msub»«mi mathvariant=¨normal¨»I«/mi»«mn»2«/mn»«/msub»«mo»§nbsp;«/mo»«mo»+«/mo»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»Starch«/mi»«mo»§nbsp;«/mo»«mo»§#8594;«/mo»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»Blue«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»Complex«/mi»«/math»

The time elapsed before the appearance of blue colour, gives an idea about the rate of the reaction.

Learning Outcomes

  • Students understand the terms chemical kinetics and rate of reaction.
  • Students understand the effect of concentration of the reactant on the rate of a chemical reaction.
  • Once students understand the concept of the experiment and the different steps involved, they can perform the experiment in the real lab more accurately and quickly.

Materials Required

Theory & Procedure, Kinetic Study on the Reaction between Iodide Ions and Hydrogen Peroxide Class 12 Notes | EduRev

Procedure

Real Lab Procedure

  • Take four 250 ml conical flasks and label them as A, B, C and D.
  • Add 5ml, 10 ml, 15 ml and 20 ml of 0.1 M potassium iodide (KI) solution to the flasks A, B, C and D respectively.
  • Add 10ml of 2.5 M H2SO4 to each flask.
  • To make the volume of the solution 100ml in each flask add water to them.
  • Add 5 ml of starch solution to each flask.
  • Add 10 ml of 0.05 M sodium thiosulphate (Na2S2O3) solution to each flask.
  • Add 5 ml of 3% H2O2 solution to flask A and start the stop- watch immediately.
  • Stir the mixture using a glass rod and wait for the blue colour to appear.
  • Note the time when the blue colour just appears.
  • Repeat the experiment by adding 5 ml of 3% hydrogen peroxide solution to flasks B, C and D and note the time required in each case for the blue colour first appears.

Simulator Procedure (as performed through the Online Labs)

  • You can select the volume of potassium iodide (KI) solution using the slider.
  • Drag the conical flask containing 0.1 M potassium iodide (KI) solution to the measuring jar to measure the solution.
  • Drag the measuring jar to the conical flask to pour the solution in it.
  • Drag the bottle to the measuring jar to measure 10ml 2.5 M sulphuric acid.
  • Drag the measuring jar to the conical flask to pour sulphuric acid in it.
  • Drag the beaker to the measuring jar to measure distilled water.
  • Drag the measuring jar to the conical flask to pour water in it.
  • Drag the bottle to the measuring jar to measure 5 ml starch solution.
  • Drag the measuring jar to the conical flask to pour the starch solution in it.
  • Drag the bottle to the measuring jar to measure 10 ml 0.05 M sodium thiosulphate (Na2S2O3) solution.
  • Drag the measuring jar to the conical flask to pour sodium sulphite solution in it.
  • Drag the bottle to the measuring jar to measure 5ml 3% hydrogen peroxide (H2O2) solution.
  • Drag the measuring jar to the conical flask to pour hydrogen peroxide solution in it.
  • You can get the time taken for the appearance of blue colour from the stopwatch.
  • You can use the embedded worksheet to enter the values.
  • You can plot a graph using the worksheet.
  • To redo the experiment, click the ‘Reset’ button.

Note: Click on the ‘HELP’ button to see the instructions.

Observation

Record the observations as shown in the table given below:

Flask
0.1 M KI solution (ml)
2.5 M H2SO4(ml)
Water (ml)
Starch solution (ml)
0.05 M sodium thiosulphate solution (ml)
3% H2O2(ml)
Time (t) for the appearance of blue colour (s)
A
5
10
85
5
10
5
 
B
10
10
80
5
10
5
 
C
15
10
75
5
10
5
 
D
20
10
70
5
10
5
 

Conclusion

The rate of the reaction increases with an increase in the concentration of iodide ions.

Precaution

  • Always use freshly prepared solution of sodium thiosulphate.
  • Concentration of KI solution should be higher than the concentration of sodium thiosulphate solution.
  • Use freshly prepared starch solution.
Offer running on EduRev: Apply code STAYHOME200 to get INR 200 off on our premium plan EduRev Infinity!

Dynamic Test

Content Category

Related Searches

Kinetic Study on the Reaction between Iodide Ions and Hydrogen Peroxide Class 12 Notes | EduRev

,

Exam

,

Important questions

,

Sample Paper

,

Kinetic Study on the Reaction between Iodide Ions and Hydrogen Peroxide Class 12 Notes | EduRev

,

mock tests for examination

,

Objective type Questions

,

Theory & Procedure

,

Kinetic Study on the Reaction between Iodide Ions and Hydrogen Peroxide Class 12 Notes | EduRev

,

Extra Questions

,

Summary

,

Free

,

Theory & Procedure

,

Viva Questions

,

Semester Notes

,

MCQs

,

shortcuts and tricks

,

practice quizzes

,

Theory & Procedure

,

Previous Year Questions with Solutions

,

video lectures

,

past year papers

,

study material

,

pdf

,

ppt

;