Class 12 Exam  >  Class 12 Notes  >  Sample Papers for Class 12 Medical and Non-Medical  >  Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5

Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical PDF Download

Class-XII


Time: 120 Minutes


Max. Marks: 40

General Instructions :

  1. This question paper contains three sections A, B and C. Each part is compulsory.
  2. Section - A has 6 short answer type (SA1) questions of 2 marks each.
  3. Section - B has 4 short answer type (SA2) questions of 3 marks each.
  4. Section - C has 4 long answer type questions (LA) of 4 marks each.
  5. There is an internal choice in some of the questions.
  6. Q.14 is a case-based problem having 2 sub parts of 2 marks each.

Section - A

Q.1. Find the value of Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical
OR
Evaluate : Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical

Let I = Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical
= Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical+ Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical
When f(x) is an even function, then,
Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical
and if f(x) is an odd function, then
Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical= 0
∴ I = Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical
Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical = π
OR
Let,
I = Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical 
= Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical
Also, put ex = t, ⇒ exdx = dt
⇒ I = Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical
= tan-1t + C
= tan-1(ex) + C


Q.2. Show that Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical = 0 is the solution of y= e–x (A cos x + B sin x).

Given that, y = e–x (A cos x + B sin x)
On differentiating both sides w.r.t., x we get
dy/dx = -e-x(A cos x + B sin x) + e–x (-A sin x + B cos x)
dy/dx = -y + e-x(-A sin x + B cos x)
Again, differentiating both sides w.r.t. x, we get
Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical (-A sin x + B cos x)
Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical
Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical
Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical
Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical = 0

(Hence Proved 1)


Q.3. Find the projection of vector Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical on the vector Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical.

Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical
= 4 + 6 + 2 = 12
Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical
or p = Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical  Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical = 3
= 12/3 = 4


Q.4. If the lines Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical and Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical are perpendicular to each other, then find the value of p.

Using formula for perpendicular condition,
l1l2 + m1m2 + n1n2 = 0
or – 8p + 6p – 28 = 0
or – 2p = 28
∴ p = 14


Q.5. If P(A) = 0.4, P(B) = 0.8 and P(B/A) = 0.6, then P(A ∪ B).

Here,
P(A) = 0.4, P(B) = 0.8 and P(B/A) = 0.6
Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical
⇒ P(B ∩ A) = Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical
= 0.6 x 0.4 = 0.24
∵ P(A ∪ B) = P(A) + P(B) - P(B ∩ A)
= 0.4 + 0.8 - 0.24
= 1.2 - 0.24
= 0.96


Q.6. Find the probability distribution of X, the number of heads is a simultaneous toss of two coins.

Let X be the number of heads
Possible values of X are 0, 1, 2.
P(x = 0) = 1/4, P(x = 1) = 1/2, P(x = 2) = 1/4
The probability distribution of X is :
Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical

Section - B

Q.7.Evaluate: Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical

I =Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical        ..(i)
Apply the property Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical
I = Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical
or I = Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical
or I = Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical        ..(ii)
Adding eqn. (i) and (ii), we get
or 2I = Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical
So, I = Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical


Q.8. Solve Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical = 0 subject to the initial condition y(0) = 0.
OR
Find the particular solution of the following differential equation :
Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical ; y = 0 when x = 0

Given differential equation can be written as: 

Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical
Comparing with
Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical
⇒ P = Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical, Q = Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical
I.F. (Integrating factor)
= Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical
= Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical
= 1 + x2
∴ General solution is :
y(1 + x2) = Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical
or, y(1 + x2) = Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical
Putting x = 0 and y = 0, we get C = 0
∴ Solution is:
y = Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical
OR
Given equation can be written as
Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical
Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical
⇒ -log|2 - ey| + logc = log|x + 1|
⇒ (2 - ey)(x + 1) = c
When x= 0 , y = 0 ⇒ c =  1
∴ The required solution is (2 - ey) ( x +1) = 1


Q.9. Find the area of the parallelogram whose diagonals are represented by the vectors Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical andClass 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical.
OR
Find λ and μ if Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical

The vector equation for diagonals are Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical andClass 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical
Now, Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical
= Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical
Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical = √4 + 16 + 16 = √36 = 6
Area of the parallelogram
= Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical = 3 sq. units
OR
Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical = 0
or Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical
or Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical= 0
or 3μ + 9λ = 0 ...(i)
or μ – 27 = 0 ...(ii)
or – λ – 9 = 0 ...(iii)
From eqn. (ii) and (iii),
μ = 27
and λ = 9


Q.10. Find the value of λ, so that the lines  Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medicaland Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical

are at right angles. Also, find whether the lines are intersecting or not.

Given lines are :
Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medicaland Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical
As lines are perpendicular,
Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical= 0
⇒ λ =7
So, lines are
Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical
Consider
Δ = Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical 
= Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical
= -63
Since, as ∆  0 ⇒ lines are not intersecting.

Download the notes
Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5
Download as PDF
Download as PDF

Section - C

Q.11. Show that: Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-MedicalClass 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical

I = Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical                      ...(i)
By applying property
Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical
I = Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical
I = Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical                      ...(ii)
Adding eqn. (i) & (ii)
∴ 2I = Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical
=Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical
⇒ 2I = Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical
= Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical
= Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical
I = Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical
I = Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical


Q.12. Find the area of the region bounded by the parabola y2 = x and the line 2y = x.
OR
Find the area of the region bounded by the parabola y2 = 16x and the line x = 4.

When y2 =x  and 2y = x
Solving we get y2 =2y
⇒ y = 0, 2  and when y = 2, x = 4 and y = 0
⇒ x = 0
So, points of intersection are (0, 0) and (4, 2).
Graphs of parabola y2 = x and 2y = x are as shown in the adjoining figure :
Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical
From the figure, area of the shaded region,
A = Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical
= Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical
= Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical
= 4/3 sq. units
Parabola y2 = 16x and line x = 4
at x = 4, y2 = 64 ⇒ y = ±8
Hence, the point of intersection (4, 8) and (4, –8)
OR
Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical
Area = Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical
= Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical
= Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical

= Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical
= 16/3 x 8
= 128/3 sq. units


Q.13. If Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical are unit vectors such that Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical  and the angle between Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical and 

Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical is π/6, then prove that: Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical

As given, Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medicalboth Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical and Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical
Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical are unit vectors
or Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical
Let, Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical
then Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical
or Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical = |λ|
or  |λ| = Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical
= 2
∴ λ = ±2
Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical

Take a Practice Test
Test yourself on topics from Class 12 exam
Practice Now
Practice Now

Case-Based/Data Based

Q.14. Bag I contains 1 white, 2 black and 3 red balls; Bag II contains 2 white, 1 black and 1 red balls; Bag III contains 4 white, 3 black and 2 red balls. A bag is chosen at random and two balls are drawn from it with replacement. They happen to be one white and one red.
Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical
Based on the above information, answer the following questions:
(i) What is the probability that they came from Bag III?
(ii) What is the probability that they will come from Bag I?

Let E1 = Bag I is chosen, E2 = Bag II is chosen, E3 = Bag III is chosen, A = The two balls drawn from the chosen bag are one white and one red.
P(E1) = 1/3
= P(E2) = P(E3),
Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical,
Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical
(i) By Bayes’ Theorem, Required probability
= Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical
= Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical x Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical
= Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical
= Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical
= 64/199
(ii) By Bayes' theorem Required probability
= Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical
= Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical
= Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical
= Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical
= 54/199

The document Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical is a part of the Class 12 Course Sample Papers for Class 12 Medical and Non-Medical.
All you need of Class 12 at this link: Class 12
Are you preparing for Class 12 Exam? Then you should check out the best video lectures, notes, free mock test series, crash course and much more provided by EduRev. You also get your detailed analysis and report cards along with 24x7 doubt solving for you to excel in Class 12 exam. So join EduRev now and revolutionise the way you learn!
Sign up for Free Download App for Free
159 docs|4 tests

Up next

Up next

Explore Courses for Class 12 exam
Related Searches

pdf

,

mock tests for examination

,

Exam

,

Viva Questions

,

ppt

,

study material

,

Important questions

,

Free

,

video lectures

,

Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical

,

Semester Notes

,

Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical

,

Extra Questions

,

MCQs

,

Summary

,

practice quizzes

,

past year papers

,

Class 12 Mathematics: CBSE Sample Question Paper- Term II (2021-22)- 5 | Sample Papers for Class 12 Medical and Non-Medical

,

shortcuts and tricks

,

Objective type Questions

,

Sample Paper

,

Previous Year Questions with Solutions

;