Electrical Engineering (EE) Signal & Systems- Introduction to signals and systems
- Classification of signals
- Time-domain analysis of signals
- System properties and classifications
- Fourier series representation of periodic signals
- Fourier transform and its properties
- Convolution and correlation of signals
- Laplace transform and its applications in signal analysis
- System response and stability analysis
- Frequency response of systems
- Discrete-time signals and systems
- Sampling and reconstruction of signals
Electrical Engineering (EE) Signals In Natural Domain- Continuous-time signals and their characteristics
- Signal operations and transformations
- Signal analysis using differential equations
- Fourier series representation of continuous-time signals
- Fourier transform and its properties for continuous-time signals
- Power spectral density and energy spectral density
- Filtering and modulation techniques for continuous-time signals
- Time-domain analysis of continuous-time systems
- Stability analysis and Bode plots
- Design of continuous-time filters
Electrical Engineering (EE) Laplace and Z Transform- Introduction to Laplace transform
- Properties of Laplace transform
- Inverse Laplace transform
- Transfer functions and their applications
- System representation using Laplace transform
- Stability analysis using Laplace transform
- Introduction to Z-transform
- Properties of Z-transform
- Inverse Z-transform
- Transfer functions and their applications in discrete-time systems
- System representation using Z-transform
- Stability analysis using Z-transform
Electrical Engineering (EE) Signals in Frequency Domain- Frequency-domain representation of signals
- Fourier transform and its properties
- Fourier series representation of periodic signals
- Power spectral density and energy spectral density
- Filtering techniques and frequency response analysis
- Fourier analysis of linear time-invariant systems
- Frequency response and transfer function representation
- Bode plots and stability analysis
- Design of filters and equalizers for frequency-domain signals
Electrical Engineering (EE) Sampling & Reconstruction- Introduction to discrete-time signals
- Sampling theorem and Nyquist frequency
- Aliasing and anti-aliasing filters
- Signal reconstruction using interpolation techniques
- Discrete Fourier transform and its properties
- Fast Fourier transform algorithm
- Windowing techniques and spectral leakage
- Design of digital filters for discrete-time signals
- Filter design using frequency sampling and windowing methods
- System identification and parameter estimation using sampled signals
ConclusionIn this syllabus for Electrical Engineering (EE) in the field of Signal & Systems, students will learn the fundamentals and advanced concepts related to signals, systems, and their analysis. They will gain knowledge in time-domain and frequency-domain representation of signals, as well as the analysis and design of systems using various transforms such as Laplace transform and Z-transform. The topics of sampling and reconstruction will also be covered, providing students with a comprehensive understanding of signal processing techniques.
This course is helpful for the following exams: Electrical Engineering (EE), Electronics and Communication Engineering (ECE)