Class 10 Exam  >  Class 10 Questions  >  Prove that the product of any 3 consecutive p... Start Learning for Free
Prove that the product of any 3 consecutive positive integer is divisible by 6.?
Verified Answer
Prove that the product of any 3 consecutive positive integer is divisi...
Let us three consecutive  integers be, n, n + 1 and n + 2.
Whenever a number is divided by 3 the remainder obtained is either 0 or 1 or 2.
let n = 3p or 3p + 1 or 3p + 2, where p is some integer.
If n = 3p, then n is divisible by 3.
If n = 3p + 1, then n + 2 = 3p + 1 + 2 = 3p + 3 = 3(p + 1) is divisible by 3.
If n = 3p + 2, then n + 1 = 3p + 2 + 1 = 3p + 3 = 3(p + 1) is divisible by 3.
So that n, n + 1 and n + 2 is always divisible by 3.
⇒ n (n + 1) (n + 2) is divisible by 3.
 
Similarly, whenever a number is divided 2 we will get the remainder is 0 or 1.
∴ n = 2q or 2q + 1, where q is some integer.
If n = 2q, then n and n + 2 = 2q + 2 = 2(q + 1) are divisible by 2.
If n = 2q + 1, then n + 1 = 2q + 1 + 1 = 2q + 2 = 2 (q + 1) is divisible by 2.
So that n, n + 1 and n + 2 is always divisible by 2.
⇒ n (n + 1) (n + 2) is divisible by 2.
But n (n + 1) (n + 2) is divisible by 2 and 3.
∴ n (n + 1) (n + 2) is divisible by 6.
This question is part of UPSC exam. View all Class 10 courses
Most Upvoted Answer
Prove that the product of any 3 consecutive positive integer is divisi...
Proof that the product of any 3 consecutive positive integers is divisible by 6

Introduction:
When we multiply any three consecutive positive integers, at least one of them will be divisible by 2 and another by 3. This is because every third integer is divisible by 3, and every second integer is divisible by 2. Therefore, the product of any three consecutive positive integers will be divisible by 6.

Explanation:
Let's consider three consecutive positive integers: n, n+1, and n+2.

Proof:
- Case 1: If n is even, then n+1 is odd and n+2 is even.
- Case 2: If n is divisible by 3, then n+1 and n+2 are not divisible by 3.
- Case 3: If n is not divisible by 2 or 3, then n+1 is even and n+2 is divisible by 3.
In each case, at least one of the three consecutive numbers is divisible by 2 and one by 3. Thus, the product of n, n+1, and n+2 will be divisible by 2 * 3 = 6.
Therefore, we have shown that the product of any three consecutive positive integers is divisible by 6.
Attention Class 10 Students!
To make sure you are not studying endlessly, EduRev has designed Class 10 study material, with Structured Courses, Videos, & Test Series. Plus get personalized analysis, doubt solving and improvement plans to achieve a great score in Class 10.
Explore Courses for Class 10 exam

Top Courses for Class 10

Prove that the product of any 3 consecutive positive integer is divisible by 6.?
Question Description
Prove that the product of any 3 consecutive positive integer is divisible by 6.? for Class 10 2024 is part of Class 10 preparation. The Question and answers have been prepared according to the Class 10 exam syllabus. Information about Prove that the product of any 3 consecutive positive integer is divisible by 6.? covers all topics & solutions for Class 10 2024 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for Prove that the product of any 3 consecutive positive integer is divisible by 6.?.
Solutions for Prove that the product of any 3 consecutive positive integer is divisible by 6.? in English & in Hindi are available as part of our courses for Class 10. Download more important topics, notes, lectures and mock test series for Class 10 Exam by signing up for free.
Here you can find the meaning of Prove that the product of any 3 consecutive positive integer is divisible by 6.? defined & explained in the simplest way possible. Besides giving the explanation of Prove that the product of any 3 consecutive positive integer is divisible by 6.?, a detailed solution for Prove that the product of any 3 consecutive positive integer is divisible by 6.? has been provided alongside types of Prove that the product of any 3 consecutive positive integer is divisible by 6.? theory, EduRev gives you an ample number of questions to practice Prove that the product of any 3 consecutive positive integer is divisible by 6.? tests, examples and also practice Class 10 tests.
Explore Courses for Class 10 exam

Top Courses for Class 10

Explore Courses
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev