This is an overlapping sets problem. This question can be effectively solved with a double-set matrix composed of two overlapping sets: [Spanish/Not Spanish] and [French/Not French]. When constructing a double-set matrix, remember that the two categories adjacent to each other must be mutually exclusive, i.e. [French/not French] are mutually exclusive, but [French/not Spanish] are not mutually exclusive. Following these rules, let’s construct and fill in a double-set matrix for each statement. To simplify our work with percentages, we will also pick 100 for the total number of students at Jefferson High School.
INSUFFICIENT: While we know the percentage of students who take French and, from that information, the percentage of students who do not take French, we do not know anything about the students taking Spanish. Therefore we don't know the percentage of students who study French but not Spanish, i.e. the number in the target cell denoted with x.
(2) INSUFFICIENT: While we know the percentage of students who do not take Spanish and, from that information, the percentage of students who do take Spanish, we do not know anything about the students taking French. Therefore we don't know the percentage of students who study French but not Spanish, i.e. the number in the target cell denoted with
x.
AND (2) INSUFFICIENT: Even after we combine the two statements, we do not have sufficient information to find the percentage of students who study French but not Spanish, i.e. to fill in the target cell denoted with
x.
The correct answer is E.