A solution of the quadratic equation (a+b-2c)x2+ (2a-b-c)x + (c+a-2b)=...
Solution:
Given quadratic equation is (a b-2c)x^2 (2a-b-c)x (c a-2b)=0
To solve this quadratic equation, we can use the quadratic formula which is given by:
For a quadratic equation of the form ax^2 + bx + c = 0, the solution is given by:
x = (-b ± √(b^2 - 4ac)) / 2a
Here, a = a b-2c, b = 2a-b-c, and c = c a-2b
Substituting these values in the quadratic formula, we get:
x = [-(2a-b-c) ± √((2a-b-c)^2 - 4(a b-2c)(c a-2b))] / 2(a b-2c)
Simplifying this expression, we get:
x = [-(2a-b-c) ± √(4a^2 + b^2 + c^2 - 4ab - 4ac + 8bc)] / 2(a b-2c)
x = [-(2a-b-c) ± √((2a - b + 2c)^2 - 4(a + c)(a - 2b))] / 2(a b-2c)
x = [-(2a-b-c) ± √((2a - b + 2c)^2 - 4(a + c)(a - 2b))] / 2(a b-2c)
x = [-(2a-b-c) ± √((2a - b + 2c)^2 - 4(a + c)(a - 2b))] / 2(a b-2c)
Now, we can simplify the discriminant under the square root as follows:
(2a - b + 2c)^2 - 4(a + c)(a - 2b)
= 4a^2 + b^2 + 4c^2 - 4ab - 8ac + 8bc - 4a^2 + 8ab - 16bc
= b^2 + 4c^2 - 4ac - 4bc
= (b - 2c)^2
Substituting this back into the quadratic formula, we get:
x = [-(2a-b-c) ± (b - 2c)] / 2(a b-2c)
x = [-2a+b+c ± (b - 2c)] / 2(a b-2c)
x = (b - 2c) / 2(a b-2c) or x = c / a-2b
Therefore, the solutions of the quadratic equation are:
x = (b - 2c) / 2(a b-2c) or x = c / a-2b
Comparing these solutions with the given options, we can see that the correct answer is option B, x = -1.
A solution of the quadratic equation (a+b-2c)x2+ (2a-b-c)x + (c+a-2b)=...
(a+b-2c)x² + (2a-b-c)x + (c+a-2b)=0
(a+b-2c)x² + (a+a-2b+b-2c+c)x + (c+a-2b)=0
(a+b-2c)x² + (a+b-2c)x + (a-2b+c)x + (c+a-2b)=0
(a+b-2c)x { x + 1} +. (c+a-2b) { x + 1} = 0
( x + 1) { (a+b-2c)x + (c+a-2b)} = 0
( x+1) = 0. or. (a+b-2c)x + (c+a-2b)=0
x = 0-1. or. (a+b-2c)x. = 0 - (c+a-2b)
x = -1. or. (a+b-2c)x. = -c-a+2b
x = -1. or. x. =. (-c-a+2b)÷(a+b-2c)
Hence, x = -1 is the answer. option(b)