Find the sum of all three digit natural no. which leave the remainder ...
Find the sum of all three digit natural no. which leave the remainder ...
Sum of Three Digit Numbers leaving Remainder 3 when Divided by 5
Explanation:
To find the sum of all three-digit natural numbers which leave a remainder of 3 when divided by 5, we need to follow a systematic approach.
Finding the Range:
- The smallest three-digit number is 100, and the largest three-digit number is 999.
- We need to find the numbers in this range that leave a remainder of 3 when divided by 5.
Finding the Numbers:
- To find the numbers that leave a remainder of 3 when divided by 5, we can start by looking at the first few numbers: 103, 108, 113, 118, ...
- We can observe a pattern that repeats every 5 numbers.
- So, we need to find how many groups of 5 numbers exist within the range of three-digit numbers.
Calculating the Sum:
- To find the sum, we can calculate the average of the first and last number in each group of 5, as they are equally spaced.
- The average of the first and last number in each group is (103+118)/2 = 110.5.
- There are 180 groups of 5 numbers in the range of three-digit numbers.
- So, the sum of all three-digit numbers leaving a remainder of 3 when divided by 5 is 180 x 110.5 = 19935.
Therefore, the sum of all three-digit natural numbers which leave a remainder of 3 when divided by 5 is 19935.
To make sure you are not studying endlessly, EduRev has designed Class 10 study material, with Structured Courses, Videos, & Test Series. Plus get personalized analysis, doubt solving and improvement plans to achieve a great score in Class 10.