What are minerals ? give 2 examples. name the 2 carrier rock of minera...
In geology and mineralogy, a mineral or mineral species is, broadly speaking, a solid chemical compound with a fairly well-defined chemical composition and a specific crystal structure, that occurs naturally in pure form.[1].[2]
The geological definition of mineral normally excludes compounds that occur only in living beings. However some minerals are often biogenic (such as calcite) or are organic compounds in the sense of chemistry (such as mellite). Moreover, living beings often synthesize inorganic minerals (such as hydroxylapatite) that also occur in rocks.
The concept of mineral is distinct from rock, any bulk solid geologic material that is relatively homogeneous at a large enough scale. A rock may consist of one type of mineral, or may be an aggregate of two or more different types of minerals, spacially segregated into distinct phases.[3]
Some natural solid substances without a definite crystalline structure, such as opal or obsidian, are more properly called mineraloids.[4] If a chemical compound may occur naturally with different crystal structures, each structure is considered a different mineral species. Thus, for example, quartz and stishovite are two different minerals consisting of the same compound, silicon dioxide.
The International Mineralogical Association (IMA) is the generally recognized standard body for the definition and nomenclature of mineral species. As of March 2020, the IMA recognizes 5,562 official mineral species[5] out of more than 5,750 proposed or traditional ones.[6]
The chemical composition of a named mineral species may vary somewhat by the inclusion of small amounts of impurities. Specific varieties of a species sometimes have conventional or official names of their own.[7] For example, amethyst is a purple variety of the mineral species quartz. Some mineral species can have variable proportions of two or more chemical elements that occupy equivalent positions in the mineral's structure; for example, the formula of mackinawite is given as (Fe,Ni)
9S
8, meaning Fe
xNi
9-xS
8, where x is a variable number between 0 and 9. Sometimes a mineral with variable composition is split into separate species, more or less arbitrarily, forming a mineral group; that is the case of the silicates Ca
xMg
yFe
2-x-ySiO
4, the olivine group.
Besides the essential chemical composition and crystal structure, the description of a mineral species usually includes its common physical properties such as habit, hardness, lustre, diaphaneity, colour, streak, tenacity, cleavage, fracture, parting, specific gravity, magnetism, fluorescence, radioactivity, as well as its taste or smell and its reaction to acid.
Minerals are classified by key chemical constituents; the two dominant systems are the Dana classification and the Strunz classification. Silicate minerals comprise approximately 90% of the Earth's crust.[8] Other important mineral groups include the native elements, sulfides, oxides, halides, carbonates, sulfates, and phosphates.
IMA definition
The International Mineralogical Association has established the following requirements for a substance to be considered a distinct mineral:[9][10]
It must be a naturally occurring substance formed by natural geological processes, on Earth or other extraterrestrial bodies. This excludes compounds directly and exclusively generated by human activities (anthropogenic) or in living beings (biogenic), such as tungsten carbide, urinary calculi, calcium oxalate crystals in plant tissues, and seashells. However, substances with such origins may qualify if geological processes were involved in their genesis (as is the case of evenkite, derived from plant material; or taranakite, from bat guano; or alpersite, from mine tailings).[10] Hypothetical substances are also excluded, even if they are predicted to occur in currently inaccessible natural environments like the Earth's core or other planets.
It must be a solid substance in its natural occurrence. A major exception to this rule is native mercury: it is still classified as a mineral by the IMA, even though crystallizes only below −39 °C, because it was included before the current rules were established.[11] Water is and carbon dioxide are not considered minerals, even though they are often found as inclusions in other minerals; but water ice is considered a mineral.[12]
It must have a well-defined crystallographic structure; or, more generally, an ordered atomic arrangement.[13] This property implies several macroscopic physical properties, such as crystal form, hardness, and cleavage.[14] It excludes ozokerite, limonite, obsidian and many other amorphous (non-crystalline) materials that occur in geologic contexts.
It must have a fairly well defined chemical composition. However, certain crystalline substances with a fixed structure but variable composition may be considered single mineral species. A common class of examples are solid solutions such as mackinawite, (Fe, Ni)9S8, which is mostly a ferrous sulfide with a significant fraction of iron atoms replaced by nickel atoms.[13][15] Other examples include layered crystals with variable layer stacking, or crystals that differ only in the regular arrangement of vacancies and substitutions. On the other hand, some substances that have a continuous series of compositions may be arbitrarily split into several minerals. The typical example is the olivine group (Mg, Fe)2SiO4, whose magnesium-rich and iron-rich end-members are considered separate minerals (forsterite and fayalite).
The details of these rules are somewhat controversial.[13] For instance, there have been several recent proposals to classify amorphous substances as minerals, but they have not been accepted by the IMA.
The IMA is also reluctant to accept minerals that occur naturally only in the form of nanoparticles a few hundred atoms across, but has not defined a minimum crystal size.[9]
Some authors require the material to be a stable or metastable solid at room temperature (25 °C).[13] However, the IMA only requires that the substance be stable enough for its structure and composition to be well-determined. For example, it has recently recognized Meridianiite (a naturally occurring hydrate of magnesium sulfate) as a mineral, even though it is formed and stable only below 2 °C.
As of January 2020, 5,562 mineral species are approved by the IMA.[5] They are most commonly named after a person, followed by discovery location; names based on chemical composition or physical properties are the two other major groups of mineral name etymologies.[16][17] Most names end in "-ite"; the exceptions are usually names that were well-established before the organization of mineralogy as a discipline, like galena and diamond.
A topic of contention among geologists and mineralogists has been the IMA's decision to exclude biogenic crystalline substances. For example, Lowenstam (1981) stated that "organisms are capable of forming a diverse array of minerals, some of which cannot be formed inorganically in the biosphere."[18]
Skinner (2005) views all solids as potential minerals and includes biominerals in the mineral kingdom, which are those that are created by the metabolic activities of organisms. Skinner expanded the previous definition of a mineral to classify "element or compound, amorphous or crystalline, formed through biogeochemical processes," as a mineral.[19]
Recent advances in high-resolution genetics and X-ray absorption spectroscopy are providing revelations on the biogeochemical relations between microorganisms and minerals that may shed new light on this question.[10][19] For example, the IMA-commissioned "Working Group on Environmental Mineralogy and Geochemistry " deals with minerals in the hydrosphere, atmosphere, and biosphere.[20] The group's scope includes mineral-forming microorganisms, which exist on nearly every rock, soil, and particle surface spanning the globe to depths of at least 1600 metres below the sea floor and 70 kilometres into the stratosphere (possibly entering the mesosphere).[21][22][23]
Biogeochemical cycles have contributed to the formation of minerals for billions of years. Microorganisms can precipitate metals from solution, contributing to the formation of ore deposits. They can also catalyze the dissolution of minerals.[24][25][26]
Prior to the International Mineralogical Association's listing, over 60 biominerals had been discovered, named, and published.[27] These minerals (a sub-set tabulated in Lowenstam (1981)[18]) are considered minerals proper according to Skinner's (2005) definition.[19] These biominerals are not listed in the International Mineral Association official list of mineral names,[28] however, many of these biomineral representatives are distributed amongst the 78 mineral classes listed in the Dana classification scheme.[19]
Skinner's (2005) definition of a mineral takes this matter into account by stating that a mineral can be crystalline or amorphous.[19] Although biominerals are not the most common form of minerals,[29] they help to define the limits of what constitutes a mineral proper. Nickel's (1995) formal definition explicitly mentioned crystallinity as a key to defining a substance as a mineral. A 2011 article defined icosahedrite, an aluminium-iron-copper alloy as mineral; named for its unique natural icosahedral symmetry, it is a quasicrystal. Unlike a true crystal, quasicrystals are ordered but not periodic.[30][31]
A rock is an aggregate of one or more minerals[32] or mineraloids. Some rocks, such as limestone or quartzite, are composed primarily of one mineral – calcite or aragonite in the case of limestone, and quartz in the latter case.[33][34] Other rocks can be defined by relative abundances of key (essential) minerals; a granite is defined by proportions of quartz, alkali feldspar, and plagioclase feldspar.[35] The other minerals in the rock are termed accessory minerals, and do not greatly affect the bulk composition of the rock. Rocks can also be composed entirely of non-mineral material; coal is a sedimentary rock composed primarily of organically derived carbon.[32][36]
In rocks, some mineral species and groups are much more abundant than others; these are termed the rock-forming minerals. The major examples of these are quartz, the feldspars, the micas, the amphiboles, the pyroxenes, the olivines, and calcite; except for the last one, all of these minerals are silicates.[37] Overall, around 150 minerals are considered particularly important, whether in terms of their abundance or aesthetic value in terms of collecting.[38]
Commercially valuable minerals and rocks are referred to as industrial minerals. For example, muscovite, a white mica, can be used for windows (sometimes referred to as isinglass), as a filler, or as an insulator.[39]
Ores are minerals that have a high concentration of a certain element, typically a metal. Examples are cinnabar (HgS), an ore of mercury; sphalerite (ZnS), an ore of zinc; cassiterite (SnO2), an ore of tin; and colemanite, an ore of boron.
Gems are minerals with an ornamental value, and are distinguished from non-gems by their beauty, durability, and usually, rarity. There are about 20 mineral species that qualify as gem minerals, which constitute about 35 of the most common gemstones. Gem minerals are often present in several varieties, and so one mineral can account for several different gemstones; for example, ruby and sapphire are both corundum, Al2O3.[40]
The first known use of the word "mineral" in the English language (Middle English) was the 15th century. The word came from Medieval Latin minerale, from minera mine, ore.[41]
The word "species" comes from the Latin species, "a particular sort, kind, or type with distinct look, or appearance".[42]
The abundance and diversity of minerals is controlled directly by their chemistry, in turn dependent on elemental abundances in the Earth. The majority of minerals observed are derived from the Earth's crust. Eight elements account for most of the key components of minerals, due to their abundance in the crust. These eight elements, summing to over 98% of the crust by weight, are, in order of decreasing abundance: oxygen, silicon, aluminium, iron, magnesium, calcium, sodium and potassium. Oxygen and silicon are by far the two most important – oxygen composes 47% of the crust by weight, and silicon accounts for 28%.[43]
The minerals that form are directly controlled by the bulk chemistry of the parent body. For example, a magma rich in iron and magnesium will form mafic minerals, such as olivine and the pyroxenes; in contrast, a more silica-rich magma will crystallize to form minerals that incorporate more SiO2, such as the feldspars and quartz. In a limestone, calcite or aragonite (both CaCO3) form because the rock is rich in calcium and carbonate. A corollary is that a mineral will not be found in a rock whose bulk chemistry does not resemble the bulk chemistry of a given mineral with the exception of trace minerals. For example, kyanite, Al2SiO5 forms from the metamorphism of aluminium-rich shales; it would not likely occur in aluminium-poor rock, such as quartzite.
The chemical composition may vary between end member species of a solid solution series. For example, the plagioclase feldspars comprise a continuous series from sodium-rich end member albite (NaAlSi3O8) to calcium-rich anorthite (CaAl2Si2O8) with four recognized intermediate varieties between them (given in order from sodium- to calcium-rich): oligoclase, andesine, labradorite, and bytownite.[44] Other examples of series include the olivine series of magnesium-rich forsterite and iron-rich fayalite, and the wolframite series of manganese-rich hübnerite and iron-rich ferberite.
Chemical substitution and coordination polyhedra explain this common feature of minerals. In nature, minerals are not pure substances, and are contaminated by whatever other elements are present in the given chemical system. As a result, it is possible for one element to be substituted for another.[45] Chemical substitution will occur between ions of a similar size and charge; for example, K+ will not substitute for Si4+ because of chemical and structural incompatibilities caused by a big difference in size and charge. A common example of chemical substitution is that of Si4+ by Al3+, which are close in charge, size, and abundance in the crust. In the example of plagioclase, there are three cases of substitution. Feldspars are all framework silicates, which have a silicon-oxygen ratio of 2:1, and the space for other elements is given by the substitution of Si4+ by Al3+ to give a base unit of [AlSi3O8]−; without the substitution, the formula would be charge-balanced as SiO2, giving quartz.[46] The significance of this structural property will be explained further by coordination polyhedra. The second substitution occurs between Na+ and Ca2+; however, the difference in charge has to accounted for by making a second substitution of Si4+ by Al3+.[47]
Coordination polyhedra are geometric representations of how a cation is surrounded by an anion. In mineralogy, coordination polyhedra are usually considered in terms of oxygen, due its abundance in the crust. The base unit of silicate minerals is the silica tetrahedron – one Si4+ surrounded by four O2−. An alternate way of describing the coordination of the silicate is by a number: in the case of the silica tetrahedron, the silicon is said to have a coordination number of 4. Various cations have a specific range of possible coordination numbers; for silicon, it is almost always 4, except for very high-pressure minerals where the compound is compressed such that silicon is in six-fold (octahedral) coordination with oxygen. Bigger cations have a bigger coordination numbers because of the increase in relative size as compared to oxygen (the last orbital subshell of heavier atoms is different too). Changes in coordination numbers leads to physical and mineralogical differences; for example, at high pressure, such as in the mantle, many minerals, especially silicates such as olivine and garnet, will change to a perovskite structure, where silicon is in octahedral coordination. Other examples are the aluminosilicates kyanite, andalusite, and sillimanite (polymorphs, since they share the formula Al2SiO5), which differ by the coordination number of the Al3+; these minerals transition from one another as a response to changes in pressure and temperature.[43] In the case of silicate materials, the substitution of Si4+ by Al3+ allows for a variety of minerals because of the need to balance charges.[48]
Changes in temperature and pressure and composition alter the mineralogy of a rock sample. Changes in composition can be caused by processes such as weathering or metasomatism (hydrothermal alteration). Changes in temperature and pressure occur when the host rock undergoes tectonic or magmatic movement into differing physical regimes. Changes in thermodynamic conditions make it favourable for mineral assemblages to react with each other to produce new minerals; as such, it is possible for two rocks to have an identical or a very similar bulk rock chemistry without having a similar mineralogy. This process of mineralogical alteration is related to the rock cycle. An example of a series of mineral reactions is illustrated as follows.[49]
Orthoclase feldspar (KAlSi3O8) is a mineral commonly found in granite, a plutonic igneous rock. When exposed to weathering, it reacts to form kaolinite (Al2Si2O5(OH)4, a sedimentary mineral, and silicic acid):
Classifying minerals ranges from simple to difficult. A mineral can be identified by several physical properties, some of them being sufficient for full identification without equivocation. In other cases, minerals can only be classified by more complex optical, chemical or X-ray diffraction analysis; these methods, however, can be costly and time-consuming. Physical properties applied for classification include crystal structure and habit, hardness, lustre, diaphaneity, colour, streak, cleavage and fracture, and specific gravity. Other less general tests include fluorescence, phosphorescence, magnetism, radioactivity, tenacity (response to mechanical induced changes of shape or form), piezoelectricity and reactivity to dilute acids.[51]
Classifying minerals ranges from simple to difficult. A mineral can be identified by several physical properties, some of them being sufficient for full identification without equivocation. In other cases, minerals can only be classified by more complex optical, chemical or X-ray diffraction analysis; these methods, however, can be costly and time-consuming. Physical properties applied for classification include crystal structure and habit, hardness, lustre, diaphaneity, colour, streak, cleavage and fracture, and specific gravity. Other less general tests include fluorescence, phosphorescence, magnetism, radioactivity, tenacity (response to mechanical induced changes of shape or form), piezoelectricity and reactivity to dilute acids.[51]
The hexagonal crystal family is also split into two crystal systems – the trigonal, which has a three-fold axis of symmetry, and the hexagonal, which has a six-fold axis of symmetry.
Chemistry and crystal structure together define a mineral. With a restriction to 32 point groups, minerals of different chemistry may have identical crystal structure. For example, halite (NaCl), galena (PbS), and periclase (MgO) all belong to the hexaoctahedral point group (isometric family), as they have a similar stoichiometry between their different constituent elements. In contrast, polymorphs are groupings of minerals that share a chemical formula but have a different structure. For example, pyrite and marcasite, both iron sulfides, have the formula FeS2; however, the former is isometric while the latter is orthorhombic. This polymorphism extends to other sulfides with the generic AX2 formula; these two groups are collectively known as the pyrite and marcasite groups.[53]
Polymorphism can extend beyond pure symmetry content. The aluminosilicates are a group of three minerals – kyanite, andalusite, and sillimanite – which share the chemical formula Al2SiO5. Kyanite is triclinic, while andalusite and sillimanite are both orthorhombic and belong to the dipyramidal point group. These differences arise corresponding to how aluminium is coordinated within the crystal structure. In all minerals, one aluminium ion is always in six-fold coordination with oxygen. Silicon, as a general rule, is in four-fold coordination in all minerals; an exception is a case like stishovite (SiO2, an ultra-high pressure quartz polymorph with rutile structure).[54] In kyanite, the second aluminium is in six-fold coordination; its chemical formula can be expressed as Al[6]Al[6]SiO5, to reflect its crystal structure. Andalusite has the second aluminium in five-fold coordination (Al[6]Al[5]SiO5) and sillimanite has it in four-fold coordination (Al[6]Al[4]SiO5).[55]
Differences in crystal structure and chemistry greatly influence other physical properties of the mineral. The carbon allotropes diamond and graphite have vastly different properties; diamond is the hardest natural substance, has an adamantine lustre, and belongs to the isometric crystal family, whereas graphite is very soft, has a greasy lustre, and crystallises in the hexagonal family. This difference is accounted for by differences in bonding. In diamond, the carbons are in sp3 hybrid orbitals, which means they form a framework where each carbon is covalently bonded to four neighbours in a tetrahedral fashion; on the other hand, graphite is composed of sheets of carbons in sp2 hybrid orbitals, where each carbon is bonded covalently to only three others. These sheets are held together by much weaker van der Waals forces, and this discrepancy translates to large macroscopic differences.[56]
Twinning is the intergrowth of two or more crystals of a single mineral species. The geometry of the twinning is controlled by the mineral's symmetry. As a result, there are several types of twins, including contact twins, reticulated twins, geniculated twins, penetration twins, cyclic twins, and polysynthetic twins. Contact, or simple twins, consist of two crystals joined at a plane; this type of twinning is common in spinel. Reticulated twins, common in rutile, are interlocking crystals resembling netting. Geniculated twins have a bend in the middle that is caused by start of the twin. Penetration twins consist of two single crystals that have grown into each other; examples of this twinning include cross-shaped staurolite twins and Carlsbad twinning in orthoclase. Cyclic twins are caused by repeated twinning around a rotation axis. This type of twinning occurs around three, four, five, six, or eight-fold axes, and the corresponding patterns are called threelings, fourlings, fivelings, sixlings, and eightlings. Sixlings are common in aragonite. Polysynthetic twins are similar to cyclic twins through the presence of repetitive twinning; however, instead of occurring around a rotational axis, polysynthetic twinning occurs along parallel planes, usually on a microscopic scale.[57][58]
Crystal habit refers to the overall shape of crystal. Several terms are used to describe this property. Common habits include acicular, which describes needlelike crystals as in natrolite, bladed, dendritic (tree-pattern, common in native copper), equant, which is typical of garnet, prismatic (elongated in one direction), and tabular, which differs from bladed habit in that the former is platy whereas the latter has a defined elongation. Related to crystal form, the quality of crystal faces is diagnostic of some minerals, especially with a petrographic microscope. Euhedral crystals have a defined external shape, while anhedral crystals do not; those intermediate forms are termed subhedral.[59][60]