Question Description
Directions: Read the passage and answer the questions that follow:There are two parties to every observation---the observed and the observerWhat we see depends not only on the object looked at, but on our own circumstances---position, motion, or more personal idiosyncrasies. Sometimes by instinctive habit, sometimes by design, we attempt to eliminate our own share in the observation, and so form a general picture of the world outside us, which shall be common to all observers. A small speck on the horizon of the sea is interpreted as a giant steamer. From the window of our railway carriage we see a cow glide past at fifty miles an hour, and remark that the creature is enjoying a rest. We see the starry heavens revolve round the earth, but decide that it is really the earth that is revolving, and so picture the state of the universe in a way which would be acceptable to an astronomer on any other planet.The first step in throwing our knowledge into a common stock must be the elimination of the various individual standpoints and the reduction to some specified standard observer. The picture of the world so obtained is none the less relative. We have not eliminated the observer's share; we have only fixed it definitely.To obtain a conception of the world from the point of view of no one in particular is a much more difficult task. The position of the observer can be eliminated; we are able to grasp the conception of a chair as an object in nature---looked at all round, and not from any particular angle or distance. We can think of it without mentally assigning ourselves some position with respect to it. This is a remarkable faculty, which has evidently been greatly assisted by the perception of solid relief with our two eyes. But the motion of the observer is not eliminated so simply. We had thought that it was accomplished; but the discovery that observers with different motions use different space- and time-reckoning shows that the matter is more complicated than was supposed. It may well require a complete change in our apparatus of description, because all the familiar terms of physics refer primarily to the relations of the world to an observer in some specified circumstances.Whether we are able to go still further and obtain a knowledge of the world, which not merely does not particularise the observer, but does not postulate an observer at all; whether if such knowledge could be obtained, it would convey any intelligible meaning; and whether it could be of any conceivable interest to anybody if it could be understood---these questions need not detain us now. The answers are not necessarily negative, but they lie outside the normal scope of physics.The circumstances of an observer which affect his observations are his position, motion and gauge of magnitude. More personal idiosyncracies disappear if, instead of relying on his crude senses, he employs scientific measuring apparatus. But scientific apparatus has position, motion and size, so that these are still involved in the results of any observation. There is no essential distinction between scientific measures and the measures of the senses. In either case our acquaintance with the external world comes to us through material channels; the observer's body can be regarded as part of his laboratory equipment, and, so far as we know, it obeys the same laws. We therefore group together perceptions and scientific measures, and in speaking of “a particular observer” we include all his measuring appliances.Position, motion, magnitude-scale---these factors have a profound influence on the aspect of the world to us. Can we form a picture of the world which shall be a synthesis of what is seen by observers in all sorts of positions, having all sorts of velocities, and all sorts of sizes?As per the passage, which one of the following is true?a)There is an essential distinction between scientific measures and the measures of the senses.b)The picture of the world obtained by eliminating various individual standpoints and the reduction to some specified observer is completely independent and non-relative in nature.c)Knowledge of world without an observer at all is certainly possible, though conventional bounds of physics would have to be crossed for to achieve the same.d)The scope of physics is unlimited and can never have any boundaries whatsoever.Correct answer is option 'C'. Can you explain this answer? for CAT 2024 is part of CAT preparation. The Question and answers have been prepared
according to
the CAT exam syllabus. Information about Directions: Read the passage and answer the questions that follow:There are two parties to every observation---the observed and the observerWhat we see depends not only on the object looked at, but on our own circumstances---position, motion, or more personal idiosyncrasies. Sometimes by instinctive habit, sometimes by design, we attempt to eliminate our own share in the observation, and so form a general picture of the world outside us, which shall be common to all observers. A small speck on the horizon of the sea is interpreted as a giant steamer. From the window of our railway carriage we see a cow glide past at fifty miles an hour, and remark that the creature is enjoying a rest. We see the starry heavens revolve round the earth, but decide that it is really the earth that is revolving, and so picture the state of the universe in a way which would be acceptable to an astronomer on any other planet.The first step in throwing our knowledge into a common stock must be the elimination of the various individual standpoints and the reduction to some specified standard observer. The picture of the world so obtained is none the less relative. We have not eliminated the observer's share; we have only fixed it definitely.To obtain a conception of the world from the point of view of no one in particular is a much more difficult task. The position of the observer can be eliminated; we are able to grasp the conception of a chair as an object in nature---looked at all round, and not from any particular angle or distance. We can think of it without mentally assigning ourselves some position with respect to it. This is a remarkable faculty, which has evidently been greatly assisted by the perception of solid relief with our two eyes. But the motion of the observer is not eliminated so simply. We had thought that it was accomplished; but the discovery that observers with different motions use different space- and time-reckoning shows that the matter is more complicated than was supposed. It may well require a complete change in our apparatus of description, because all the familiar terms of physics refer primarily to the relations of the world to an observer in some specified circumstances.Whether we are able to go still further and obtain a knowledge of the world, which not merely does not particularise the observer, but does not postulate an observer at all; whether if such knowledge could be obtained, it would convey any intelligible meaning; and whether it could be of any conceivable interest to anybody if it could be understood---these questions need not detain us now. The answers are not necessarily negative, but they lie outside the normal scope of physics.The circumstances of an observer which affect his observations are his position, motion and gauge of magnitude. More personal idiosyncracies disappear if, instead of relying on his crude senses, he employs scientific measuring apparatus. But scientific apparatus has position, motion and size, so that these are still involved in the results of any observation. There is no essential distinction between scientific measures and the measures of the senses. In either case our acquaintance with the external world comes to us through material channels; the observer's body can be regarded as part of his laboratory equipment, and, so far as we know, it obeys the same laws. We therefore group together perceptions and scientific measures, and in speaking of “a particular observer” we include all his measuring appliances.Position, motion, magnitude-scale---these factors have a profound influence on the aspect of the world to us. Can we form a picture of the world which shall be a synthesis of what is seen by observers in all sorts of positions, having all sorts of velocities, and all sorts of sizes?As per the passage, which one of the following is true?a)There is an essential distinction between scientific measures and the measures of the senses.b)The picture of the world obtained by eliminating various individual standpoints and the reduction to some specified observer is completely independent and non-relative in nature.c)Knowledge of world without an observer at all is certainly possible, though conventional bounds of physics would have to be crossed for to achieve the same.d)The scope of physics is unlimited and can never have any boundaries whatsoever.Correct answer is option 'C'. Can you explain this answer? covers all topics & solutions for CAT 2024 Exam.
Find important definitions, questions, meanings, examples, exercises and tests below for Directions: Read the passage and answer the questions that follow:There are two parties to every observation---the observed and the observerWhat we see depends not only on the object looked at, but on our own circumstances---position, motion, or more personal idiosyncrasies. Sometimes by instinctive habit, sometimes by design, we attempt to eliminate our own share in the observation, and so form a general picture of the world outside us, which shall be common to all observers. A small speck on the horizon of the sea is interpreted as a giant steamer. From the window of our railway carriage we see a cow glide past at fifty miles an hour, and remark that the creature is enjoying a rest. We see the starry heavens revolve round the earth, but decide that it is really the earth that is revolving, and so picture the state of the universe in a way which would be acceptable to an astronomer on any other planet.The first step in throwing our knowledge into a common stock must be the elimination of the various individual standpoints and the reduction to some specified standard observer. The picture of the world so obtained is none the less relative. We have not eliminated the observer's share; we have only fixed it definitely.To obtain a conception of the world from the point of view of no one in particular is a much more difficult task. The position of the observer can be eliminated; we are able to grasp the conception of a chair as an object in nature---looked at all round, and not from any particular angle or distance. We can think of it without mentally assigning ourselves some position with respect to it. This is a remarkable faculty, which has evidently been greatly assisted by the perception of solid relief with our two eyes. But the motion of the observer is not eliminated so simply. We had thought that it was accomplished; but the discovery that observers with different motions use different space- and time-reckoning shows that the matter is more complicated than was supposed. It may well require a complete change in our apparatus of description, because all the familiar terms of physics refer primarily to the relations of the world to an observer in some specified circumstances.Whether we are able to go still further and obtain a knowledge of the world, which not merely does not particularise the observer, but does not postulate an observer at all; whether if such knowledge could be obtained, it would convey any intelligible meaning; and whether it could be of any conceivable interest to anybody if it could be understood---these questions need not detain us now. The answers are not necessarily negative, but they lie outside the normal scope of physics.The circumstances of an observer which affect his observations are his position, motion and gauge of magnitude. More personal idiosyncracies disappear if, instead of relying on his crude senses, he employs scientific measuring apparatus. But scientific apparatus has position, motion and size, so that these are still involved in the results of any observation. There is no essential distinction between scientific measures and the measures of the senses. In either case our acquaintance with the external world comes to us through material channels; the observer's body can be regarded as part of his laboratory equipment, and, so far as we know, it obeys the same laws. We therefore group together perceptions and scientific measures, and in speaking of “a particular observer” we include all his measuring appliances.Position, motion, magnitude-scale---these factors have a profound influence on the aspect of the world to us. Can we form a picture of the world which shall be a synthesis of what is seen by observers in all sorts of positions, having all sorts of velocities, and all sorts of sizes?As per the passage, which one of the following is true?a)There is an essential distinction between scientific measures and the measures of the senses.b)The picture of the world obtained by eliminating various individual standpoints and the reduction to some specified observer is completely independent and non-relative in nature.c)Knowledge of world without an observer at all is certainly possible, though conventional bounds of physics would have to be crossed for to achieve the same.d)The scope of physics is unlimited and can never have any boundaries whatsoever.Correct answer is option 'C'. Can you explain this answer?.
Solutions for Directions: Read the passage and answer the questions that follow:There are two parties to every observation---the observed and the observerWhat we see depends not only on the object looked at, but on our own circumstances---position, motion, or more personal idiosyncrasies. Sometimes by instinctive habit, sometimes by design, we attempt to eliminate our own share in the observation, and so form a general picture of the world outside us, which shall be common to all observers. A small speck on the horizon of the sea is interpreted as a giant steamer. From the window of our railway carriage we see a cow glide past at fifty miles an hour, and remark that the creature is enjoying a rest. We see the starry heavens revolve round the earth, but decide that it is really the earth that is revolving, and so picture the state of the universe in a way which would be acceptable to an astronomer on any other planet.The first step in throwing our knowledge into a common stock must be the elimination of the various individual standpoints and the reduction to some specified standard observer. The picture of the world so obtained is none the less relative. We have not eliminated the observer's share; we have only fixed it definitely.To obtain a conception of the world from the point of view of no one in particular is a much more difficult task. The position of the observer can be eliminated; we are able to grasp the conception of a chair as an object in nature---looked at all round, and not from any particular angle or distance. We can think of it without mentally assigning ourselves some position with respect to it. This is a remarkable faculty, which has evidently been greatly assisted by the perception of solid relief with our two eyes. But the motion of the observer is not eliminated so simply. We had thought that it was accomplished; but the discovery that observers with different motions use different space- and time-reckoning shows that the matter is more complicated than was supposed. It may well require a complete change in our apparatus of description, because all the familiar terms of physics refer primarily to the relations of the world to an observer in some specified circumstances.Whether we are able to go still further and obtain a knowledge of the world, which not merely does not particularise the observer, but does not postulate an observer at all; whether if such knowledge could be obtained, it would convey any intelligible meaning; and whether it could be of any conceivable interest to anybody if it could be understood---these questions need not detain us now. The answers are not necessarily negative, but they lie outside the normal scope of physics.The circumstances of an observer which affect his observations are his position, motion and gauge of magnitude. More personal idiosyncracies disappear if, instead of relying on his crude senses, he employs scientific measuring apparatus. But scientific apparatus has position, motion and size, so that these are still involved in the results of any observation. There is no essential distinction between scientific measures and the measures of the senses. In either case our acquaintance with the external world comes to us through material channels; the observer's body can be regarded as part of his laboratory equipment, and, so far as we know, it obeys the same laws. We therefore group together perceptions and scientific measures, and in speaking of “a particular observer” we include all his measuring appliances.Position, motion, magnitude-scale---these factors have a profound influence on the aspect of the world to us. Can we form a picture of the world which shall be a synthesis of what is seen by observers in all sorts of positions, having all sorts of velocities, and all sorts of sizes?As per the passage, which one of the following is true?a)There is an essential distinction between scientific measures and the measures of the senses.b)The picture of the world obtained by eliminating various individual standpoints and the reduction to some specified observer is completely independent and non-relative in nature.c)Knowledge of world without an observer at all is certainly possible, though conventional bounds of physics would have to be crossed for to achieve the same.d)The scope of physics is unlimited and can never have any boundaries whatsoever.Correct answer is option 'C'. Can you explain this answer? in English & in Hindi are available as part of our courses for CAT.
Download more important topics, notes, lectures and mock test series for CAT Exam by signing up for free.
Here you can find the meaning of Directions: Read the passage and answer the questions that follow:There are two parties to every observation---the observed and the observerWhat we see depends not only on the object looked at, but on our own circumstances---position, motion, or more personal idiosyncrasies. Sometimes by instinctive habit, sometimes by design, we attempt to eliminate our own share in the observation, and so form a general picture of the world outside us, which shall be common to all observers. A small speck on the horizon of the sea is interpreted as a giant steamer. From the window of our railway carriage we see a cow glide past at fifty miles an hour, and remark that the creature is enjoying a rest. We see the starry heavens revolve round the earth, but decide that it is really the earth that is revolving, and so picture the state of the universe in a way which would be acceptable to an astronomer on any other planet.The first step in throwing our knowledge into a common stock must be the elimination of the various individual standpoints and the reduction to some specified standard observer. The picture of the world so obtained is none the less relative. We have not eliminated the observer's share; we have only fixed it definitely.To obtain a conception of the world from the point of view of no one in particular is a much more difficult task. The position of the observer can be eliminated; we are able to grasp the conception of a chair as an object in nature---looked at all round, and not from any particular angle or distance. We can think of it without mentally assigning ourselves some position with respect to it. This is a remarkable faculty, which has evidently been greatly assisted by the perception of solid relief with our two eyes. But the motion of the observer is not eliminated so simply. We had thought that it was accomplished; but the discovery that observers with different motions use different space- and time-reckoning shows that the matter is more complicated than was supposed. It may well require a complete change in our apparatus of description, because all the familiar terms of physics refer primarily to the relations of the world to an observer in some specified circumstances.Whether we are able to go still further and obtain a knowledge of the world, which not merely does not particularise the observer, but does not postulate an observer at all; whether if such knowledge could be obtained, it would convey any intelligible meaning; and whether it could be of any conceivable interest to anybody if it could be understood---these questions need not detain us now. The answers are not necessarily negative, but they lie outside the normal scope of physics.The circumstances of an observer which affect his observations are his position, motion and gauge of magnitude. More personal idiosyncracies disappear if, instead of relying on his crude senses, he employs scientific measuring apparatus. But scientific apparatus has position, motion and size, so that these are still involved in the results of any observation. There is no essential distinction between scientific measures and the measures of the senses. In either case our acquaintance with the external world comes to us through material channels; the observer's body can be regarded as part of his laboratory equipment, and, so far as we know, it obeys the same laws. We therefore group together perceptions and scientific measures, and in speaking of “a particular observer” we include all his measuring appliances.Position, motion, magnitude-scale---these factors have a profound influence on the aspect of the world to us. Can we form a picture of the world which shall be a synthesis of what is seen by observers in all sorts of positions, having all sorts of velocities, and all sorts of sizes?As per the passage, which one of the following is true?a)There is an essential distinction between scientific measures and the measures of the senses.b)The picture of the world obtained by eliminating various individual standpoints and the reduction to some specified observer is completely independent and non-relative in nature.c)Knowledge of world without an observer at all is certainly possible, though conventional bounds of physics would have to be crossed for to achieve the same.d)The scope of physics is unlimited and can never have any boundaries whatsoever.Correct answer is option 'C'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of
Directions: Read the passage and answer the questions that follow:There are two parties to every observation---the observed and the observerWhat we see depends not only on the object looked at, but on our own circumstances---position, motion, or more personal idiosyncrasies. Sometimes by instinctive habit, sometimes by design, we attempt to eliminate our own share in the observation, and so form a general picture of the world outside us, which shall be common to all observers. A small speck on the horizon of the sea is interpreted as a giant steamer. From the window of our railway carriage we see a cow glide past at fifty miles an hour, and remark that the creature is enjoying a rest. We see the starry heavens revolve round the earth, but decide that it is really the earth that is revolving, and so picture the state of the universe in a way which would be acceptable to an astronomer on any other planet.The first step in throwing our knowledge into a common stock must be the elimination of the various individual standpoints and the reduction to some specified standard observer. The picture of the world so obtained is none the less relative. We have not eliminated the observer's share; we have only fixed it definitely.To obtain a conception of the world from the point of view of no one in particular is a much more difficult task. The position of the observer can be eliminated; we are able to grasp the conception of a chair as an object in nature---looked at all round, and not from any particular angle or distance. We can think of it without mentally assigning ourselves some position with respect to it. This is a remarkable faculty, which has evidently been greatly assisted by the perception of solid relief with our two eyes. But the motion of the observer is not eliminated so simply. We had thought that it was accomplished; but the discovery that observers with different motions use different space- and time-reckoning shows that the matter is more complicated than was supposed. It may well require a complete change in our apparatus of description, because all the familiar terms of physics refer primarily to the relations of the world to an observer in some specified circumstances.Whether we are able to go still further and obtain a knowledge of the world, which not merely does not particularise the observer, but does not postulate an observer at all; whether if such knowledge could be obtained, it would convey any intelligible meaning; and whether it could be of any conceivable interest to anybody if it could be understood---these questions need not detain us now. The answers are not necessarily negative, but they lie outside the normal scope of physics.The circumstances of an observer which affect his observations are his position, motion and gauge of magnitude. More personal idiosyncracies disappear if, instead of relying on his crude senses, he employs scientific measuring apparatus. But scientific apparatus has position, motion and size, so that these are still involved in the results of any observation. There is no essential distinction between scientific measures and the measures of the senses. In either case our acquaintance with the external world comes to us through material channels; the observer's body can be regarded as part of his laboratory equipment, and, so far as we know, it obeys the same laws. We therefore group together perceptions and scientific measures, and in speaking of “a particular observer” we include all his measuring appliances.Position, motion, magnitude-scale---these factors have a profound influence on the aspect of the world to us. Can we form a picture of the world which shall be a synthesis of what is seen by observers in all sorts of positions, having all sorts of velocities, and all sorts of sizes?As per the passage, which one of the following is true?a)There is an essential distinction between scientific measures and the measures of the senses.b)The picture of the world obtained by eliminating various individual standpoints and the reduction to some specified observer is completely independent and non-relative in nature.c)Knowledge of world without an observer at all is certainly possible, though conventional bounds of physics would have to be crossed for to achieve the same.d)The scope of physics is unlimited and can never have any boundaries whatsoever.Correct answer is option 'C'. Can you explain this answer?, a detailed solution for Directions: Read the passage and answer the questions that follow:There are two parties to every observation---the observed and the observerWhat we see depends not only on the object looked at, but on our own circumstances---position, motion, or more personal idiosyncrasies. Sometimes by instinctive habit, sometimes by design, we attempt to eliminate our own share in the observation, and so form a general picture of the world outside us, which shall be common to all observers. A small speck on the horizon of the sea is interpreted as a giant steamer. From the window of our railway carriage we see a cow glide past at fifty miles an hour, and remark that the creature is enjoying a rest. We see the starry heavens revolve round the earth, but decide that it is really the earth that is revolving, and so picture the state of the universe in a way which would be acceptable to an astronomer on any other planet.The first step in throwing our knowledge into a common stock must be the elimination of the various individual standpoints and the reduction to some specified standard observer. The picture of the world so obtained is none the less relative. We have not eliminated the observer's share; we have only fixed it definitely.To obtain a conception of the world from the point of view of no one in particular is a much more difficult task. The position of the observer can be eliminated; we are able to grasp the conception of a chair as an object in nature---looked at all round, and not from any particular angle or distance. We can think of it without mentally assigning ourselves some position with respect to it. This is a remarkable faculty, which has evidently been greatly assisted by the perception of solid relief with our two eyes. But the motion of the observer is not eliminated so simply. We had thought that it was accomplished; but the discovery that observers with different motions use different space- and time-reckoning shows that the matter is more complicated than was supposed. It may well require a complete change in our apparatus of description, because all the familiar terms of physics refer primarily to the relations of the world to an observer in some specified circumstances.Whether we are able to go still further and obtain a knowledge of the world, which not merely does not particularise the observer, but does not postulate an observer at all; whether if such knowledge could be obtained, it would convey any intelligible meaning; and whether it could be of any conceivable interest to anybody if it could be understood---these questions need not detain us now. The answers are not necessarily negative, but they lie outside the normal scope of physics.The circumstances of an observer which affect his observations are his position, motion and gauge of magnitude. More personal idiosyncracies disappear if, instead of relying on his crude senses, he employs scientific measuring apparatus. But scientific apparatus has position, motion and size, so that these are still involved in the results of any observation. There is no essential distinction between scientific measures and the measures of the senses. In either case our acquaintance with the external world comes to us through material channels; the observer's body can be regarded as part of his laboratory equipment, and, so far as we know, it obeys the same laws. We therefore group together perceptions and scientific measures, and in speaking of “a particular observer” we include all his measuring appliances.Position, motion, magnitude-scale---these factors have a profound influence on the aspect of the world to us. Can we form a picture of the world which shall be a synthesis of what is seen by observers in all sorts of positions, having all sorts of velocities, and all sorts of sizes?As per the passage, which one of the following is true?a)There is an essential distinction between scientific measures and the measures of the senses.b)The picture of the world obtained by eliminating various individual standpoints and the reduction to some specified observer is completely independent and non-relative in nature.c)Knowledge of world without an observer at all is certainly possible, though conventional bounds of physics would have to be crossed for to achieve the same.d)The scope of physics is unlimited and can never have any boundaries whatsoever.Correct answer is option 'C'. Can you explain this answer? has been provided alongside types of Directions: Read the passage and answer the questions that follow:There are two parties to every observation---the observed and the observerWhat we see depends not only on the object looked at, but on our own circumstances---position, motion, or more personal idiosyncrasies. Sometimes by instinctive habit, sometimes by design, we attempt to eliminate our own share in the observation, and so form a general picture of the world outside us, which shall be common to all observers. A small speck on the horizon of the sea is interpreted as a giant steamer. From the window of our railway carriage we see a cow glide past at fifty miles an hour, and remark that the creature is enjoying a rest. We see the starry heavens revolve round the earth, but decide that it is really the earth that is revolving, and so picture the state of the universe in a way which would be acceptable to an astronomer on any other planet.The first step in throwing our knowledge into a common stock must be the elimination of the various individual standpoints and the reduction to some specified standard observer. The picture of the world so obtained is none the less relative. We have not eliminated the observer's share; we have only fixed it definitely.To obtain a conception of the world from the point of view of no one in particular is a much more difficult task. The position of the observer can be eliminated; we are able to grasp the conception of a chair as an object in nature---looked at all round, and not from any particular angle or distance. We can think of it without mentally assigning ourselves some position with respect to it. This is a remarkable faculty, which has evidently been greatly assisted by the perception of solid relief with our two eyes. But the motion of the observer is not eliminated so simply. We had thought that it was accomplished; but the discovery that observers with different motions use different space- and time-reckoning shows that the matter is more complicated than was supposed. It may well require a complete change in our apparatus of description, because all the familiar terms of physics refer primarily to the relations of the world to an observer in some specified circumstances.Whether we are able to go still further and obtain a knowledge of the world, which not merely does not particularise the observer, but does not postulate an observer at all; whether if such knowledge could be obtained, it would convey any intelligible meaning; and whether it could be of any conceivable interest to anybody if it could be understood---these questions need not detain us now. The answers are not necessarily negative, but they lie outside the normal scope of physics.The circumstances of an observer which affect his observations are his position, motion and gauge of magnitude. More personal idiosyncracies disappear if, instead of relying on his crude senses, he employs scientific measuring apparatus. But scientific apparatus has position, motion and size, so that these are still involved in the results of any observation. There is no essential distinction between scientific measures and the measures of the senses. In either case our acquaintance with the external world comes to us through material channels; the observer's body can be regarded as part of his laboratory equipment, and, so far as we know, it obeys the same laws. We therefore group together perceptions and scientific measures, and in speaking of “a particular observer” we include all his measuring appliances.Position, motion, magnitude-scale---these factors have a profound influence on the aspect of the world to us. Can we form a picture of the world which shall be a synthesis of what is seen by observers in all sorts of positions, having all sorts of velocities, and all sorts of sizes?As per the passage, which one of the following is true?a)There is an essential distinction between scientific measures and the measures of the senses.b)The picture of the world obtained by eliminating various individual standpoints and the reduction to some specified observer is completely independent and non-relative in nature.c)Knowledge of world without an observer at all is certainly possible, though conventional bounds of physics would have to be crossed for to achieve the same.d)The scope of physics is unlimited and can never have any boundaries whatsoever.Correct answer is option 'C'. Can you explain this answer? theory, EduRev gives you an
ample number of questions to practice Directions: Read the passage and answer the questions that follow:There are two parties to every observation---the observed and the observerWhat we see depends not only on the object looked at, but on our own circumstances---position, motion, or more personal idiosyncrasies. Sometimes by instinctive habit, sometimes by design, we attempt to eliminate our own share in the observation, and so form a general picture of the world outside us, which shall be common to all observers. A small speck on the horizon of the sea is interpreted as a giant steamer. From the window of our railway carriage we see a cow glide past at fifty miles an hour, and remark that the creature is enjoying a rest. We see the starry heavens revolve round the earth, but decide that it is really the earth that is revolving, and so picture the state of the universe in a way which would be acceptable to an astronomer on any other planet.The first step in throwing our knowledge into a common stock must be the elimination of the various individual standpoints and the reduction to some specified standard observer. The picture of the world so obtained is none the less relative. We have not eliminated the observer's share; we have only fixed it definitely.To obtain a conception of the world from the point of view of no one in particular is a much more difficult task. The position of the observer can be eliminated; we are able to grasp the conception of a chair as an object in nature---looked at all round, and not from any particular angle or distance. We can think of it without mentally assigning ourselves some position with respect to it. This is a remarkable faculty, which has evidently been greatly assisted by the perception of solid relief with our two eyes. But the motion of the observer is not eliminated so simply. We had thought that it was accomplished; but the discovery that observers with different motions use different space- and time-reckoning shows that the matter is more complicated than was supposed. It may well require a complete change in our apparatus of description, because all the familiar terms of physics refer primarily to the relations of the world to an observer in some specified circumstances.Whether we are able to go still further and obtain a knowledge of the world, which not merely does not particularise the observer, but does not postulate an observer at all; whether if such knowledge could be obtained, it would convey any intelligible meaning; and whether it could be of any conceivable interest to anybody if it could be understood---these questions need not detain us now. The answers are not necessarily negative, but they lie outside the normal scope of physics.The circumstances of an observer which affect his observations are his position, motion and gauge of magnitude. More personal idiosyncracies disappear if, instead of relying on his crude senses, he employs scientific measuring apparatus. But scientific apparatus has position, motion and size, so that these are still involved in the results of any observation. There is no essential distinction between scientific measures and the measures of the senses. In either case our acquaintance with the external world comes to us through material channels; the observer's body can be regarded as part of his laboratory equipment, and, so far as we know, it obeys the same laws. We therefore group together perceptions and scientific measures, and in speaking of “a particular observer” we include all his measuring appliances.Position, motion, magnitude-scale---these factors have a profound influence on the aspect of the world to us. Can we form a picture of the world which shall be a synthesis of what is seen by observers in all sorts of positions, having all sorts of velocities, and all sorts of sizes?As per the passage, which one of the following is true?a)There is an essential distinction between scientific measures and the measures of the senses.b)The picture of the world obtained by eliminating various individual standpoints and the reduction to some specified observer is completely independent and non-relative in nature.c)Knowledge of world without an observer at all is certainly possible, though conventional bounds of physics would have to be crossed for to achieve the same.d)The scope of physics is unlimited and can never have any boundaries whatsoever.Correct answer is option 'C'. Can you explain this answer? tests, examples and also practice CAT tests.