The sum of first 10 terms of the series cot1 3 + cot1 7 + cot1 13 + co...
Given series: cot1 3 cot1 7 cot1 13 cot1 21 ...
To find: Sum of first 50 terms of the series
Solution:
We can write the given series as:
cot1 3 cot1 7 cot1 13 cot1 21 ... = tan1 2 (cot1 3 - cot1 2) + tan1 2 (cot1 7 - cot1 6) + tan1 2 (cot1 13 - cot1 12) + tan1 2 (cot1 21 - cot1 20) + ...
Now, we need to find the sum of first 50 terms of the series. Thus, we need to find the sum of the following 50 terms:
tan1 2 (cot1 3 - cot1 2), tan1 2 (cot1 7 - cot1 6), tan1 2 (cot1 13 - cot1 12), tan1 2 (cot1 21 - cot1 20), ...
We can simplify each term using the formula:
cot(A) - cot(B) = tan(B - A)
Using this formula, we get:
tan1 2 (cot1 3 - cot1 2) = tan1 2 (tan1 3 - tan1 2) = tan1 2 (tan1 3 - tan1 2)
Similarly, we can simplify the other terms as:
tan1 2 (cot1 7 - cot1 6) = tan1 2 (tan1 6 - tan1 7) = -tan1 2 (tan1 7 - tan1 6)
tan1 2 (cot1 13 - cot1 12) = tan1 2 (tan1 12 - tan1 13) = -tan1 2 (tan1 13 - tan1 12)
tan1 2 (cot1 21 - cot1 20) = tan1 2 (tan1 20 - tan1 21) = -tan1 2 (tan1 21 - tan1 20)
We can observe that the terms in the series occur in pairs of opposite signs. Thus, we can pair the terms as follows:
{tan1 2 (tan1 3 - tan1 2) - tan1 2 (tan1 6 - tan1 7)} + {tan1 2 (tan1 9 - tan1 8) - tan1 2 (tan1 12 - tan1 13)} + {tan1 2 (tan1 15 - tan1 14) - tan1 2 (tan1 18 - tan1 19)} + ...
Each pair of terms can be simplified as:
tan(A) - tan(B) = (tan(A) - tan(B))/(1 + tan(A)tan(B))
Using this formula, we get:
{tan1 2 (tan1 3 - tan1 2) - tan1 2 (tan1 6 - tan1 7)} = (tan1 3 - tan1 7)/(1 + tan1 3 tan1 7)
Similarly, we can simplify the other pairs of terms as:
{tan1 2 (tan1 9