If x1/p = y1/q = z1/r and xyz = 1, then the value of p+q+r isa)1b)0c)1...
x1/p=y1/q=z1/r=k (say)
⇒ x = kp,y = kq,z = kr
xyz=1 (given)
kp.kq.kr=1
k(p+q+r)=1.
k(p+q+r)=k0
p+q+r = 0
View all questions of this test
If x1/p = y1/q = z1/r and xyz = 1, then the value of p+q+r isa)1b)0c)1...
Given: x1/p = y1/q = z1/r and xyz = 1
To find: the value of pqr
Solution:
Let x1/p = y1/q = z1/r = k
So, x = kp, y = kq and z = kr
Given, xyz = 1
⇒ (kp)(kq)(kr) = 1
⇒ k3pqr = 1
⇒ pqr = 1/k3
Also, x1/p = k
⇒ xp = k
⇒ (kp)p = k
⇒ k^p+1 = k
⇒ k^p = 1
Similarly, y1/q = k
⇒ yq = k
⇒ (kq)q = k
⇒ k^q+1 = k
⇒ k^q = 1
And, z1/r = k
⇒ zr = k
⇒ (kr)r = k
⇒ k^r+1 = k
⇒ k^r = 1
Now, p, q, r can be any non-zero rational number such that k^p = k^q = k^r = 1
For example, let p = 1/2, q = 1/3 and r = 1/6
Then, k^p = k^(1/2) = √k
k^q = k^(1/3) = 3√k
k^r = k^(1/6) = 6√k
Now, xyz = 1
⇒ (kp)(kq)(kr) = 1
⇒ (k^(1/2))(k^(1/3))(k^(1/6)) = 1
⇒ k^(5/6) = 1
⇒ k = 1
So, pqr = 1/k3 = 1/1 = 1
Therefore, the correct option is (b) 0.
If x1/p = y1/q = z1/r and xyz = 1, then the value of p+q+r isa)1b)0c)1...
Let all the variable = with a constant k.... I. E x raise to the power 1/p=k than shift the power on k that is..... X = k raise to the power p nd do same with rest of the variables.. Than u get the value of x y and z than put it in the given eqn... Xyz=1 nd use the formulas