Class 10 Exam  >  Class 10 Questions  >  If x=r sin alpha*cos beta ; y=r sin alpha*sin... Start Learning for Free
If x=r sin alpha*cos beta ; y=r sin alpha*sin beta ; z=r cos alpha then,prove that x^2+y^2+z^2=r^2.?
Most Upvoted Answer
If x=r sin alpha*cos beta ; y=r sin alpha*sin beta ; z=r cos alpha the...
Proof:

Let's start by substituting the given values of x, y, and z into the equation:

x = r sin α cos β
y = r sin α sin β
z = r cos α

Step 1: Calculate x^2, y^2, and z^2 individually.

x^2 = (r sin α cos β)^2 = r^2 sin^2 α cos^2 β
y^2 = (r sin α sin β)^2 = r^2 sin^2 α sin^2 β
z^2 = (r cos α)^2 = r^2 cos^2 α

Step 2: Multiply x^2, y^2, and z^2 together.

x^2 y^2 z^2 = (r^2 sin^2 α cos^2 β) (r^2 sin^2 α sin^2 β) (r^2 cos^2 α)

Step 3: Simplify the expression.

x^2 y^2 z^2 = r^2 sin^2 α cos^2 β sin^2 α sin^2 β cos^2 α
= r^2 sin^4 α cos^2 α sin^2 β cos^2 β

Step 4: Apply the trigonometric identity sin^2 θ + cos^2 θ = 1.

x^2 y^2 z^2 = r^2 (1 - cos^2 α) cos^2 α (1 - cos^2 β) cos^2 β
= r^2 cos^2 α (1 - cos^2 α) cos^2 β (1 - cos^2 β)
= r^2 cos^2 α sin^2 α cos^2 β sin^2 β

Step 5: Apply the trigonometric identity sin^2 θ = 1 - cos^2 θ.

x^2 y^2 z^2 = r^2 (1 - cos^2 α) cos^2 α (1 - cos^2 β) cos^2 β
= r^2 sin^2 α sin^2 β cos^2 α cos^2 β

Step 6: Rearrange the terms.

x^2 y^2 z^2 = r^2 (sin α sin β cos α cos β)^2

Step 7: Apply the trigonometric identity sin θ cos θ = 1/2 sin 2θ.

x^2 y^2 z^2 = r^2 (1/2 sin 2α sin 2β)^2
= r^2 (1/4 sin^2 2α sin^2 2β)

Step 8: Apply the trigonometric identity sin^2 θ = (1 - cos 2θ)/2.

x^2 y^2 z^2 = r^2 (1/4 (1 - cos 4α)/2 (1 - cos 4β)/2)
= r^2 (1/4 (1 - cos 4α)(1 - cos 4β)/4)
= r^2 (
Community Answer
If x=r sin alpha*cos beta ; y=r sin alpha*sin beta ; z=r cos alpha the...
Attention Class 10 Students!
To make sure you are not studying endlessly, EduRev has designed Class 10 study material, with Structured Courses, Videos, & Test Series. Plus get personalized analysis, doubt solving and improvement plans to achieve a great score in Class 10.
Explore Courses for Class 10 exam

Top Courses for Class 10

If x=r sin alpha*cos beta ; y=r sin alpha*sin beta ; z=r cos alpha then,prove that x^2+y^2+z^2=r^2.?
Question Description
If x=r sin alpha*cos beta ; y=r sin alpha*sin beta ; z=r cos alpha then,prove that x^2+y^2+z^2=r^2.? for Class 10 2024 is part of Class 10 preparation. The Question and answers have been prepared according to the Class 10 exam syllabus. Information about If x=r sin alpha*cos beta ; y=r sin alpha*sin beta ; z=r cos alpha then,prove that x^2+y^2+z^2=r^2.? covers all topics & solutions for Class 10 2024 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for If x=r sin alpha*cos beta ; y=r sin alpha*sin beta ; z=r cos alpha then,prove that x^2+y^2+z^2=r^2.?.
Solutions for If x=r sin alpha*cos beta ; y=r sin alpha*sin beta ; z=r cos alpha then,prove that x^2+y^2+z^2=r^2.? in English & in Hindi are available as part of our courses for Class 10. Download more important topics, notes, lectures and mock test series for Class 10 Exam by signing up for free.
Here you can find the meaning of If x=r sin alpha*cos beta ; y=r sin alpha*sin beta ; z=r cos alpha then,prove that x^2+y^2+z^2=r^2.? defined & explained in the simplest way possible. Besides giving the explanation of If x=r sin alpha*cos beta ; y=r sin alpha*sin beta ; z=r cos alpha then,prove that x^2+y^2+z^2=r^2.?, a detailed solution for If x=r sin alpha*cos beta ; y=r sin alpha*sin beta ; z=r cos alpha then,prove that x^2+y^2+z^2=r^2.? has been provided alongside types of If x=r sin alpha*cos beta ; y=r sin alpha*sin beta ; z=r cos alpha then,prove that x^2+y^2+z^2=r^2.? theory, EduRev gives you an ample number of questions to practice If x=r sin alpha*cos beta ; y=r sin alpha*sin beta ; z=r cos alpha then,prove that x^2+y^2+z^2=r^2.? tests, examples and also practice Class 10 tests.
Explore Courses for Class 10 exam

Top Courses for Class 10

Explore Courses
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev