If cos theta + sin theta =1,prove that cos theta - sin theta = + - 1?
Given,
cosθ+sinθ=1
which means, (cosθ+sinθ)² = 1............[1]
But, we know that,
cos²θ+sin²θ=1.......[2]
From [1] and [2], we get,
(cosθ+sinθ)² = cos²θ+sin²θ
⇒ (cos²θ+sin²θ)+2cosθsinθ = cos²θ+sin²θ
⇒ 2cosθsinθ = 0................[3]
Now,
⇒ (cosθ+sinθ)² = 1 From [1]
⇒ (cosθ-sinθ)²+4cosθsinθ = 1
⇒ (cosθ-sinθ)²+2(2cosθsinθ) = 1
⇒ (cosθ-sinθ)²+0 = 1. From [3]
⇒ (cosθ-sinθ)² = 1
⇒ √(cosθ-sinθ)² = √(1)
⇒ (cosθ-sinθ) = ±1
Hence, proved.
If cos theta + sin theta =1,prove that cos theta - sin theta = + - 1?
Given Equation
To prove that \( \cos \theta - \sin \theta = \pm 1 \) when \( \cos \theta + \sin \theta = 1 \).
Step 1: Square Both Sides
Starting with the equation:
\( \cos \theta + \sin \theta = 1 \)
Square both sides:
\[
(\cos \theta + \sin \theta)^2 = 1^2
\]
This expands to:
\[
\cos^2 \theta + 2\cos \theta \sin \theta + \sin^2 \theta = 1
\]
Step 2: Use the Pythagorean Identity
Using the identity \( \cos^2 \theta + \sin^2 \theta = 1 \), we substitute:
\[
1 + 2\cos \theta \sin \theta = 1
\]
This simplifies to:
\[
2\cos \theta \sin \theta = 0
\]
Step 3: Solve for \( \cos \theta \) or \( \sin \theta \)
From \( 2\cos \theta \sin \theta = 0 \):
- Either \( \cos \theta = 0 \)
- Or \( \sin \theta = 0 \)
Step 4: Analyze Each Case
- **Case 1:** If \( \cos \theta = 0 \)
Then \( \sin \theta = 1 \) (from the original equation).
Thus, \( \cos \theta - \sin \theta = 0 - 1 = -1 \).
- **Case 2:** If \( \sin \theta = 0 \)
Then \( \cos \theta = 1 \) (from the original equation).
Thus, \( \cos \theta - \sin \theta = 1 - 0 = 1 \).
Conclusion
Combining both cases, we conclude:
\[
\cos \theta - \sin \theta = \pm 1
\]
This proves the statement as required.
To make sure you are not studying endlessly, EduRev has designed Class 10 study material, with Structured Courses, Videos, & Test Series. Plus get personalized analysis, doubt solving and improvement plans to achieve a great score in Class 10.