Prove that:- sin A-2sin³A/2cos³A-cosA=tan A ?
Hiii
(sinθ- 2 sin^3θ)/(2cos^3θ-cosθ)
=sinθ(1-2sin^2θ)/cosθ(2cos^2 θ-1)
= sin θ [1- 2(1- cos^2 θ)/cos θ(2cos ^2 θ -1)
= sin θ [1-2+ 2cos ^2 θ]/ cos θ (2 cos^2θ -1)
= sin θ(2cos^2 θ -1)/ cos θ(2 cos ^2θ-1)
= sin θ/ cos θ
= tanθ
Hope I'm clear To u..
Prove that:- sin A-2sin³A/2cos³A-cosA=tan A ?
Proving the Identity: sin A - 2sin³(A/2) / (cos³A - cosA = tan A
To prove the given identity, we'll break it down step by step.
Step 1: Simplifying the Expression
- Start with the left-hand side:
sin A - 2sin³(A/2) / (cos³A - cosA)
- Use the identity sin A = 2sin(A/2)cos(A/2) to express sin A in terms of sin(A/2).
Step 2: Rewrite the Cubic Terms
- Notice that cos³A can be factored:
cos³A - cosA = cosA(cos²A - 1)
This can be further simplified using the identity cos²A = 1 - sin²A.
Step 3: Substitute and Factor
- After substituting, you can express all terms in terms of sin(A/2) and cos(A/2).
- Factor out common terms to simplify the expression.
Step 4: Relate to tan A
- Recall that tan A = sin A / cos A.
- By substituting in the simplified expression from the previous steps, you can show that the simplified expression equals tan A.
Conclusion
- After careful manipulation and substitution of trigonometric identities, you will find that the left-hand side simplifies to the right-hand side, confirming the identity:
sin A - 2sin³(A/2) / (cos³A - cosA) = tan A.
This methodical approach demonstrates the equality and proves the identity as required.