Class 10 Exam  >  Class 10 Questions  >  CosA-sinA 1÷cosA sinA-1=cosecA cotA? Start Learning for Free
CosA-sinA 1÷cosA sinA-1=cosecA cotA?
Verified Answer
CosA-sinA 1÷cosA sinA-1=cosecA cotA?
(cos A- sin A + 1)/(cos A + sin A - 1). Divide both numerator and the denominator by sinA.the sum becomes

(cot A - 1 + cosec A)/(cot A + 1 -cosec A)

=(cosec A + cot A - 1)/(cotA - cosec A +1)

={cosecA+cotA-(cosec^2 A- cot^2 A)}/Dr where Dr=cotA-cosecA+1

={(cosecA+cotA)-(cosecA+cotA)(cosecA-cotA)}/ Dr.

=[(cosecA+cotA){1-(cosecA-cotA)}]/Dr

={(cosecA+cotA)(1-cosecA+cotA)}/Dr

=(cosecA+cotA)(cotA-cosecA+1)/Dr

=(cosecA+cotA).Dr/Dr

=cosecA+cotA.
This question is part of UPSC exam. View all Class 10 courses
Most Upvoted Answer
CosA-sinA 1÷cosA sinA-1=cosecA cotA?
Explanation:

To prove that cosA - sinA / 1 ÷ cosA sinA - 1 = cosecA cotA, we will simplify the left-hand side of the equation and then manipulate it to match the right-hand side.

Simplifying the left-hand side:

cosA - sinA / 1 ÷ cosA sinA - 1

We can simplify the numerator and denominator separately:

Numerator:
cosA - sinA

Denominator:
1 ÷ cosA sinA - 1

Manipulating the expression:

Now, let's manipulate the numerator and denominator to match the right-hand side of the equation.

Manipulating the numerator:

cosA - sinA

We can use the identity cos^2(A) + sin^2(A) = 1 to rewrite cosA as √(1 - sin^2(A)):

√(1 - sin^2(A)) - sinA

Manipulating the denominator:

1 ÷ cosA sinA - 1

We can use the identity sinA = 1 / cscA to rewrite sinA as 1 / cscA:

1 ÷ (1 / cscA) cosA - 1

Multiplying the denominator by cscA, we get:

cscA cosA - cscA

Simplifying the expression:

Now that we have manipulated both the numerator and denominator, let's simplify the expression further.

Numerator:
√(1 - sin^2(A)) - sinA

Using the identity sin^2(A) = 1 - cos^2(A), we can rewrite sin^2(A) as 1 - cos^2(A):

√(1 - (1 - cos^2(A))) - sinA

Simplifying further:

√(cos^2(A)) - sinA
cosA - sinA

Denominator:
cscA cosA - cscA

Factoring out cscA:

cscA (cosA - 1)

Final expression:

Now, let's substitute the simplified numerator and denominator back into the original expression:

cosA - sinA / cscA (cosA - 1)

Since cscA is the reciprocal of sinA, we can rewrite cscA as 1 / sinA:

cosA - sinA / (1 / sinA) (cosA - 1)

Multiplying both the numerator and denominator by sinA:

sinA (cosA - sinA) / (cosA - 1)

Using the identity cotA = cosA / sinA:

sinA (cosA - sinA) / (cosA - 1) = cosecA cotA

Conclusion:

Therefore, we have proven that cosA - sinA / 1 ÷ cosA sinA - 1 is equal to cosecA cotA.
Attention Class 10 Students!
To make sure you are not studying endlessly, EduRev has designed Class 10 study material, with Structured Courses, Videos, & Test Series. Plus get personalized analysis, doubt solving and improvement plans to achieve a great score in Class 10.
Explore Courses for Class 10 exam

Top Courses for Class 10

CosA-sinA 1÷cosA sinA-1=cosecA cotA?
Question Description
CosA-sinA 1÷cosA sinA-1=cosecA cotA? for Class 10 2024 is part of Class 10 preparation. The Question and answers have been prepared according to the Class 10 exam syllabus. Information about CosA-sinA 1÷cosA sinA-1=cosecA cotA? covers all topics & solutions for Class 10 2024 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for CosA-sinA 1÷cosA sinA-1=cosecA cotA?.
Solutions for CosA-sinA 1÷cosA sinA-1=cosecA cotA? in English & in Hindi are available as part of our courses for Class 10. Download more important topics, notes, lectures and mock test series for Class 10 Exam by signing up for free.
Here you can find the meaning of CosA-sinA 1÷cosA sinA-1=cosecA cotA? defined & explained in the simplest way possible. Besides giving the explanation of CosA-sinA 1÷cosA sinA-1=cosecA cotA?, a detailed solution for CosA-sinA 1÷cosA sinA-1=cosecA cotA? has been provided alongside types of CosA-sinA 1÷cosA sinA-1=cosecA cotA? theory, EduRev gives you an ample number of questions to practice CosA-sinA 1÷cosA sinA-1=cosecA cotA? tests, examples and also practice Class 10 tests.
Explore Courses for Class 10 exam

Top Courses for Class 10

Explore Courses
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev