UPSC Exam  >  UPSC Notes  >  Mathematics Optional Notes for UPSC  >  Area, Surface and Volume

Area, Surface and Volume | Mathematics Optional Notes for UPSC PDF Download

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


Edurev123 
7. Area, Surface and Volume 
7.1 Find the volume of the solid that lies under the paraboloid ?? =?? ?? +?? ?? above 
the ???? -plane and inside the cylinder ?? ?? +?? ?? =?? ?? . 
 
(2011 : 20 Marks). 
Solution: 
The solid lies above the disk ?? whose boundary circle has the equation ?? 2
+?? 2
=2?? or 
(?? -1)
2
+?? 2
=1. 
Its equation in polar co-ordinates is given by ?? =2cos ?? where ?? is in [-
?? 2
,
?? 2
]. 
? The volume of the solid is 
                                  ??
?? ?(?? 2
+?? 2
)???? =? ?
?? /2
-?? /2
?? ?
2cos ?? 0
??? 2
·??????????                               [??? =?? cos ?? ,?? =?? sin ?? ]
 =? ?
?? /2
-?? /2
?[
?? 4
4
]
0
2cos ?? ???? =? ?
?? /2
-?? /2
?
16cos
4
 ?? 1
????
 
                                                              =4? ?
?? /2
-?? /2
?cos
4
 ?????? =4.2? ?
?? /2
0
?cos
4
 ??????                                                                                                                 [?? ?
?? -?? ??? (?? )???? =2? ?
?? 0
??? (?? )???? if ?? (-?? )=?? (?? )]
 
=8·
3·1
4·2
·
?? 2
=
3?? 2
 
7.2 Compute the volume of the solid enclosed between the surfaces ?? ?? +?? ?? =?? 
and ?? ?? +?? ?? =?? . 
(2012: 20 Marks) 
Solution: 
The given surfaces are 
?? 2
+?? 2
=9
??????                                                 ?? 2
+?? 2
=9
 
The volume of the required solid is 
Page 2


Edurev123 
7. Area, Surface and Volume 
7.1 Find the volume of the solid that lies under the paraboloid ?? =?? ?? +?? ?? above 
the ???? -plane and inside the cylinder ?? ?? +?? ?? =?? ?? . 
 
(2011 : 20 Marks). 
Solution: 
The solid lies above the disk ?? whose boundary circle has the equation ?? 2
+?? 2
=2?? or 
(?? -1)
2
+?? 2
=1. 
Its equation in polar co-ordinates is given by ?? =2cos ?? where ?? is in [-
?? 2
,
?? 2
]. 
? The volume of the solid is 
                                  ??
?? ?(?? 2
+?? 2
)???? =? ?
?? /2
-?? /2
?? ?
2cos ?? 0
??? 2
·??????????                               [??? =?? cos ?? ,?? =?? sin ?? ]
 =? ?
?? /2
-?? /2
?[
?? 4
4
]
0
2cos ?? ???? =? ?
?? /2
-?? /2
?
16cos
4
 ?? 1
????
 
                                                              =4? ?
?? /2
-?? /2
?cos
4
 ?????? =4.2? ?
?? /2
0
?cos
4
 ??????                                                                                                                 [?? ?
?? -?? ??? (?? )???? =2? ?
?? 0
??? (?? )???? if ?? (-?? )=?? (?? )]
 
=8·
3·1
4·2
·
?? 2
=
3?? 2
 
7.2 Compute the volume of the solid enclosed between the surfaces ?? ?? +?? ?? =?? 
and ?? ?? +?? ?? =?? . 
(2012: 20 Marks) 
Solution: 
The given surfaces are 
?? 2
+?? 2
=9
??????                                                 ?? 2
+?? 2
=9
 
The volume of the required solid is 
                                           
?? =? ?
3
?? =-3
?? ?
v9-?? 2
?? =-v9-?? 2
?? ?
v9-?? 2
?? =-v9-?? 2
????????????? =8? ?
3
?? =0
?? ?
v9-?? 2
?? =0
?? ?
v9-?? 2
?? =0
????????????? =8? ?
3
?? =0
?? ?
v9-?? 2
?? =0
?
v
9-?? 2
???????? =8? ?
3
?? =0
?
v
9-?? 2
·
v
9-?? 2
???? =8? ?
3
?? =0
?(9-?? 2
)????
=8(9?? -
?? 3
3
)
0
3
=8(27-9)=8×18=144 cubic units
 
7.3 Find the surface area of the plane ?? +?? ?? +?? ?? =???? cut off by ?? =?? ,?? =?? and 
?? ?? +?? ?? =???? . 
(2016 : 15 Marks) 
Solution: 
Plane ?? +2?? +2?? =12 or 
?? 12
+
?? 6
+
?? 6
=1 cuts the co-ordinates at a distance of 12,6 and 
6 from origin. 
 
Cylinder:                                                  ?? 2
+?? 2
=16 
Planes:                                                                 ?? =0,?? =0 
 Surface Area =??
?? v1+?? ?? 2
+?? ?? 2
???????? 
Page 3


Edurev123 
7. Area, Surface and Volume 
7.1 Find the volume of the solid that lies under the paraboloid ?? =?? ?? +?? ?? above 
the ???? -plane and inside the cylinder ?? ?? +?? ?? =?? ?? . 
 
(2011 : 20 Marks). 
Solution: 
The solid lies above the disk ?? whose boundary circle has the equation ?? 2
+?? 2
=2?? or 
(?? -1)
2
+?? 2
=1. 
Its equation in polar co-ordinates is given by ?? =2cos ?? where ?? is in [-
?? 2
,
?? 2
]. 
? The volume of the solid is 
                                  ??
?? ?(?? 2
+?? 2
)???? =? ?
?? /2
-?? /2
?? ?
2cos ?? 0
??? 2
·??????????                               [??? =?? cos ?? ,?? =?? sin ?? ]
 =? ?
?? /2
-?? /2
?[
?? 4
4
]
0
2cos ?? ???? =? ?
?? /2
-?? /2
?
16cos
4
 ?? 1
????
 
                                                              =4? ?
?? /2
-?? /2
?cos
4
 ?????? =4.2? ?
?? /2
0
?cos
4
 ??????                                                                                                                 [?? ?
?? -?? ??? (?? )???? =2? ?
?? 0
??? (?? )???? if ?? (-?? )=?? (?? )]
 
=8·
3·1
4·2
·
?? 2
=
3?? 2
 
7.2 Compute the volume of the solid enclosed between the surfaces ?? ?? +?? ?? =?? 
and ?? ?? +?? ?? =?? . 
(2012: 20 Marks) 
Solution: 
The given surfaces are 
?? 2
+?? 2
=9
??????                                                 ?? 2
+?? 2
=9
 
The volume of the required solid is 
                                           
?? =? ?
3
?? =-3
?? ?
v9-?? 2
?? =-v9-?? 2
?? ?
v9-?? 2
?? =-v9-?? 2
????????????? =8? ?
3
?? =0
?? ?
v9-?? 2
?? =0
?? ?
v9-?? 2
?? =0
????????????? =8? ?
3
?? =0
?? ?
v9-?? 2
?? =0
?
v
9-?? 2
???????? =8? ?
3
?? =0
?
v
9-?? 2
·
v
9-?? 2
???? =8? ?
3
?? =0
?(9-?? 2
)????
=8(9?? -
?? 3
3
)
0
3
=8(27-9)=8×18=144 cubic units
 
7.3 Find the surface area of the plane ?? +?? ?? +?? ?? =???? cut off by ?? =?? ,?? =?? and 
?? ?? +?? ?? =???? . 
(2016 : 15 Marks) 
Solution: 
Plane ?? +2?? +2?? =12 or 
?? 12
+
?? 6
+
?? 6
=1 cuts the co-ordinates at a distance of 12,6 and 
6 from origin. 
 
Cylinder:                                                  ?? 2
+?? 2
=16 
Planes:                                                                 ?? =0,?? =0 
 Surface Area =??
?? v1+?? ?? 2
+?? ?? 2
???????? 
                                                                          =??
?
?
v
1+(-
1
2
)
2
+(-1)
2
???????? [
?? =-
?? 2
-?? +6
?? ?? =-
1
2
,?? ?? =-1
]
 
                                                                         =
3
2
??
?? ????????? 
(A: Projection of surface on ???? -plane ?? 2
+?? 2
=16,?? =0,?? =0 ) 
       =
3
2
·[
1
4
?? (4)
2
]=6?? 
7.4 The ellipse 
?? ?? ?? ?? +
?? ?? ?? ?? =?? revolves about ?? -axis. Find the volume of solid of 
revolves. 
(2018 : 13 Marks) 
Solution: 
Given ellipse is 
?? 2
?? 2
+
?? 2
?? 2
=1. 
If it is revolved around ?? -axis, then each cross-section is circular disc of radius ?? . Taking 
an element of thickness ???? and iength ???? , we get area of this cross-section as 2???????????? . 
? Volume,                                     V=?
?? =-a
?? =?? ??
?? =0
?? =?? v1-
?? 2
?? 2
2????????????  
 
?                                                      ?? =?
?? =-2
?? ?2?? [
?? 2
2
]
?? =0
?? =?? v1-
?? 2
?? 2
???? 
?                                                     ?? =?? ?
?? =-?? ?? ??? 2
(1-
?? 2
?? 2
)???? =?? ?? 2
[2?? -
2?? 3
] 
       
Page 4


Edurev123 
7. Area, Surface and Volume 
7.1 Find the volume of the solid that lies under the paraboloid ?? =?? ?? +?? ?? above 
the ???? -plane and inside the cylinder ?? ?? +?? ?? =?? ?? . 
 
(2011 : 20 Marks). 
Solution: 
The solid lies above the disk ?? whose boundary circle has the equation ?? 2
+?? 2
=2?? or 
(?? -1)
2
+?? 2
=1. 
Its equation in polar co-ordinates is given by ?? =2cos ?? where ?? is in [-
?? 2
,
?? 2
]. 
? The volume of the solid is 
                                  ??
?? ?(?? 2
+?? 2
)???? =? ?
?? /2
-?? /2
?? ?
2cos ?? 0
??? 2
·??????????                               [??? =?? cos ?? ,?? =?? sin ?? ]
 =? ?
?? /2
-?? /2
?[
?? 4
4
]
0
2cos ?? ???? =? ?
?? /2
-?? /2
?
16cos
4
 ?? 1
????
 
                                                              =4? ?
?? /2
-?? /2
?cos
4
 ?????? =4.2? ?
?? /2
0
?cos
4
 ??????                                                                                                                 [?? ?
?? -?? ??? (?? )???? =2? ?
?? 0
??? (?? )???? if ?? (-?? )=?? (?? )]
 
=8·
3·1
4·2
·
?? 2
=
3?? 2
 
7.2 Compute the volume of the solid enclosed between the surfaces ?? ?? +?? ?? =?? 
and ?? ?? +?? ?? =?? . 
(2012: 20 Marks) 
Solution: 
The given surfaces are 
?? 2
+?? 2
=9
??????                                                 ?? 2
+?? 2
=9
 
The volume of the required solid is 
                                           
?? =? ?
3
?? =-3
?? ?
v9-?? 2
?? =-v9-?? 2
?? ?
v9-?? 2
?? =-v9-?? 2
????????????? =8? ?
3
?? =0
?? ?
v9-?? 2
?? =0
?? ?
v9-?? 2
?? =0
????????????? =8? ?
3
?? =0
?? ?
v9-?? 2
?? =0
?
v
9-?? 2
???????? =8? ?
3
?? =0
?
v
9-?? 2
·
v
9-?? 2
???? =8? ?
3
?? =0
?(9-?? 2
)????
=8(9?? -
?? 3
3
)
0
3
=8(27-9)=8×18=144 cubic units
 
7.3 Find the surface area of the plane ?? +?? ?? +?? ?? =???? cut off by ?? =?? ,?? =?? and 
?? ?? +?? ?? =???? . 
(2016 : 15 Marks) 
Solution: 
Plane ?? +2?? +2?? =12 or 
?? 12
+
?? 6
+
?? 6
=1 cuts the co-ordinates at a distance of 12,6 and 
6 from origin. 
 
Cylinder:                                                  ?? 2
+?? 2
=16 
Planes:                                                                 ?? =0,?? =0 
 Surface Area =??
?? v1+?? ?? 2
+?? ?? 2
???????? 
                                                                          =??
?
?
v
1+(-
1
2
)
2
+(-1)
2
???????? [
?? =-
?? 2
-?? +6
?? ?? =-
1
2
,?? ?? =-1
]
 
                                                                         =
3
2
??
?? ????????? 
(A: Projection of surface on ???? -plane ?? 2
+?? 2
=16,?? =0,?? =0 ) 
       =
3
2
·[
1
4
?? (4)
2
]=6?? 
7.4 The ellipse 
?? ?? ?? ?? +
?? ?? ?? ?? =?? revolves about ?? -axis. Find the volume of solid of 
revolves. 
(2018 : 13 Marks) 
Solution: 
Given ellipse is 
?? 2
?? 2
+
?? 2
?? 2
=1. 
If it is revolved around ?? -axis, then each cross-section is circular disc of radius ?? . Taking 
an element of thickness ???? and iength ???? , we get area of this cross-section as 2???????????? . 
? Volume,                                     V=?
?? =-a
?? =?? ??
?? =0
?? =?? v1-
?? 2
?? 2
2????????????  
 
?                                                      ?? =?
?? =-2
?? ?2?? [
?? 2
2
]
?? =0
?? =?? v1-
?? 2
?? 2
???? 
?                                                     ?? =?? ?
?? =-?? ?? ??? 2
(1-
?? 2
?? 2
)???? =?? ?? 2
[2?? -
2?? 3
] 
       
?                                                                ?? =
4?? 3
?? ?? 2
 
7.5 Show that the entire area of the Asteroid. ?? ?? /?? +?? ?? /?? =?? ?? /?? is 
?? ?? ?? ?? ?? . 
[2021 : 15 marks] 
Solution: 
The parametric equations of the given curve, 
?? 2/3
+?? 2/3
=?? 2/3
 can be taken as ?? =?? cos
3
 ?? ,?? =?? sin
3
 ?? 
Here, C is the simple closed curve traversed in +ve direction by the whole area of the 
given hypocycloid. 
 
At the point ?? ,?? =0 and when after one complete round in anti clockwise sense aiong 
the curve ?? we come back to ?? , then at ?? ,?? =2?? . 
The area bounded by the given hypocycloid is 
Page 5


Edurev123 
7. Area, Surface and Volume 
7.1 Find the volume of the solid that lies under the paraboloid ?? =?? ?? +?? ?? above 
the ???? -plane and inside the cylinder ?? ?? +?? ?? =?? ?? . 
 
(2011 : 20 Marks). 
Solution: 
The solid lies above the disk ?? whose boundary circle has the equation ?? 2
+?? 2
=2?? or 
(?? -1)
2
+?? 2
=1. 
Its equation in polar co-ordinates is given by ?? =2cos ?? where ?? is in [-
?? 2
,
?? 2
]. 
? The volume of the solid is 
                                  ??
?? ?(?? 2
+?? 2
)???? =? ?
?? /2
-?? /2
?? ?
2cos ?? 0
??? 2
·??????????                               [??? =?? cos ?? ,?? =?? sin ?? ]
 =? ?
?? /2
-?? /2
?[
?? 4
4
]
0
2cos ?? ???? =? ?
?? /2
-?? /2
?
16cos
4
 ?? 1
????
 
                                                              =4? ?
?? /2
-?? /2
?cos
4
 ?????? =4.2? ?
?? /2
0
?cos
4
 ??????                                                                                                                 [?? ?
?? -?? ??? (?? )???? =2? ?
?? 0
??? (?? )???? if ?? (-?? )=?? (?? )]
 
=8·
3·1
4·2
·
?? 2
=
3?? 2
 
7.2 Compute the volume of the solid enclosed between the surfaces ?? ?? +?? ?? =?? 
and ?? ?? +?? ?? =?? . 
(2012: 20 Marks) 
Solution: 
The given surfaces are 
?? 2
+?? 2
=9
??????                                                 ?? 2
+?? 2
=9
 
The volume of the required solid is 
                                           
?? =? ?
3
?? =-3
?? ?
v9-?? 2
?? =-v9-?? 2
?? ?
v9-?? 2
?? =-v9-?? 2
????????????? =8? ?
3
?? =0
?? ?
v9-?? 2
?? =0
?? ?
v9-?? 2
?? =0
????????????? =8? ?
3
?? =0
?? ?
v9-?? 2
?? =0
?
v
9-?? 2
???????? =8? ?
3
?? =0
?
v
9-?? 2
·
v
9-?? 2
???? =8? ?
3
?? =0
?(9-?? 2
)????
=8(9?? -
?? 3
3
)
0
3
=8(27-9)=8×18=144 cubic units
 
7.3 Find the surface area of the plane ?? +?? ?? +?? ?? =???? cut off by ?? =?? ,?? =?? and 
?? ?? +?? ?? =???? . 
(2016 : 15 Marks) 
Solution: 
Plane ?? +2?? +2?? =12 or 
?? 12
+
?? 6
+
?? 6
=1 cuts the co-ordinates at a distance of 12,6 and 
6 from origin. 
 
Cylinder:                                                  ?? 2
+?? 2
=16 
Planes:                                                                 ?? =0,?? =0 
 Surface Area =??
?? v1+?? ?? 2
+?? ?? 2
???????? 
                                                                          =??
?
?
v
1+(-
1
2
)
2
+(-1)
2
???????? [
?? =-
?? 2
-?? +6
?? ?? =-
1
2
,?? ?? =-1
]
 
                                                                         =
3
2
??
?? ????????? 
(A: Projection of surface on ???? -plane ?? 2
+?? 2
=16,?? =0,?? =0 ) 
       =
3
2
·[
1
4
?? (4)
2
]=6?? 
7.4 The ellipse 
?? ?? ?? ?? +
?? ?? ?? ?? =?? revolves about ?? -axis. Find the volume of solid of 
revolves. 
(2018 : 13 Marks) 
Solution: 
Given ellipse is 
?? 2
?? 2
+
?? 2
?? 2
=1. 
If it is revolved around ?? -axis, then each cross-section is circular disc of radius ?? . Taking 
an element of thickness ???? and iength ???? , we get area of this cross-section as 2???????????? . 
? Volume,                                     V=?
?? =-a
?? =?? ??
?? =0
?? =?? v1-
?? 2
?? 2
2????????????  
 
?                                                      ?? =?
?? =-2
?? ?2?? [
?? 2
2
]
?? =0
?? =?? v1-
?? 2
?? 2
???? 
?                                                     ?? =?? ?
?? =-?? ?? ??? 2
(1-
?? 2
?? 2
)???? =?? ?? 2
[2?? -
2?? 3
] 
       
?                                                                ?? =
4?? 3
?? ?? 2
 
7.5 Show that the entire area of the Asteroid. ?? ?? /?? +?? ?? /?? =?? ?? /?? is 
?? ?? ?? ?? ?? . 
[2021 : 15 marks] 
Solution: 
The parametric equations of the given curve, 
?? 2/3
+?? 2/3
=?? 2/3
 can be taken as ?? =?? cos
3
 ?? ,?? =?? sin
3
 ?? 
Here, C is the simple closed curve traversed in +ve direction by the whole area of the 
given hypocycloid. 
 
At the point ?? ,?? =0 and when after one complete round in anti clockwise sense aiong 
the curve ?? we come back to ?? , then at ?? ,?? =2?? . 
The area bounded by the given hypocycloid is 
 
 =
1
2
?  
0
1
(?????? -?????? ) by Green's theorem, 
 =
1
2
? ?
2?? ?? =0
?(?? ????
????
-?? ????
????
)???? , where ?? =?? cos
3
 ?? ,?? =?? sin
3
 ?? =
1
2
? ?
2?? 0
?[?? cos
3
 ?? ×3?? sin
2
 ?? cos ?? -?? sin
3
 ?? (-3?? cos
2
 ?? sin ?? )]???? ,
 =
3?? 2
2
? ?
2?? 0
?(cos
4
 ?? sin
2
 ?? +sin
4
 ?? cos
2
 ?? )????
 =2×
3?? 2
2
? ?
?? 0
?(cos
4
 ?? sin
2
 ?? +sin
4
 ?? cos
2
 ?? )????
 =4×
3?? 2
2
? ?
?? /2
0
?(cos
4
 ?? sin
2
 ?? +sin
4
 ?? cos
2
 ?? )????
 =6?? 2
[
3·1·1
6·4·2
×
?? 2
+
3·1·1
6·4·2
×
?? 2
]=6?? 2
×
?? 16
=
3?? ?? 2
8
 
7.6 Use double integration to calculate the area common to the circle ?? ?? +?? ?? =?? 
and the parabola ?? ?? =?? ?? . 
(2022 : 15 marks) 
Solution: 
The given equations are 
?? 2
+?? 2
 =4 (??)
?? 2
 =3?? (???? )
 
 
Read More
387 videos|203 docs

FAQs on Area, Surface and Volume - Mathematics Optional Notes for UPSC

1. How do you calculate the surface area of a cube?
Ans. To calculate the surface area of a cube, you would use the formula: 6 x (side length)^2, where the side length represents the length of one side of the cube.
2. What is the difference between surface area and volume?
Ans. Surface area refers to the total area that covers the surface of a 3D object, while volume refers to the space occupied by the object.
3. How do you find the area of a circle?
Ans. To find the area of a circle, you would use the formula: π x (radius)^2, where π is a constant approximately equal to 3.14159 and the radius represents the distance from the center of the circle to any point on its circumference.
4. What is the formula for calculating the volume of a cylinder?
Ans. The formula to calculate the volume of a cylinder is: π x (radius)^2 x height, where π is a constant approximately equal to 3.14159, the radius represents the distance from the center of the base to its edge, and the height represents the distance between the two bases.
5. How do you find the surface area of a sphere?
Ans. To find the surface area of a sphere, you would use the formula: 4 x π x (radius)^2, where π is a constant approximately equal to 3.14159 and the radius represents the distance from the center of the sphere to any point on its surface.
Related Searches

Surface and Volume | Mathematics Optional Notes for UPSC

,

Surface and Volume | Mathematics Optional Notes for UPSC

,

past year papers

,

Area

,

mock tests for examination

,

Free

,

Extra Questions

,

Important questions

,

Summary

,

Surface and Volume | Mathematics Optional Notes for UPSC

,

MCQs

,

video lectures

,

Area

,

pdf

,

Area

,

shortcuts and tricks

,

Objective type Questions

,

practice quizzes

,

study material

,

Exam

,

Sample Paper

,

ppt

,

Viva Questions

,

Semester Notes

,

Previous Year Questions with Solutions

;