Download, print and study this document offline |
Page 1 Edurev123 5. Cauchy's Residue Theorem 5.1 Using Cauchy's residue theorem, evaluate the integral ?? =? ? ?? ?? ?????? ?? ??????? (2013 : 15 Marks) Solution: Using trigonometry, sin 4 ??? ?=[ 1 2 (1-cos?2?? ] 2 = 1 4 (1+cos 2 ?2?? -2cos?2?? ) ?= 1 8 [2+(1+cos?4?? )-2cos?2?? ]= 1 8 [cos?4?? -2cos?2?? +3] ?? ?=? ? ?? 0 ?sin 4 ??????? = 1 2 ? ? 2?? 0 ?sin 4 ??????? ?= 1 2 ? ? 2?? 0 ? 1 8 [cos?4?? -2cos?2?? +3]???? ?= 1 16 ? ? 2?? 0 ?[cos?4?? -2cos?2?? +3]???? ?= Real part of 1 16 ? ? 2?? 0 ?(?? ??4?? -2?? ??2?? +3)???? Let ?? =?? ???? ,???????????????????????????? =???? ???? ???? ????? = ???? ???? . = R.P. of 1 16 ??? ?? (?? 4 -2?? 2 +3)???? ???? where ?? is the unit circle. ??? ?? ?? 4 -2?? 2 +3 ?? ???? =2???? Sum of Residue of ?? (?? ) where ??????????????????????????????????????????????????????????? (?? )= ?? 4 -2?? 2 +3 ?? Now ?? (?? ) has one pole at ?? =0 inside unit circle. Residue at ?? =0=lim ?? ?0 ????? (?? ) ????????????????????????????????????????????????????????????????????=3 Page 2 Edurev123 5. Cauchy's Residue Theorem 5.1 Using Cauchy's residue theorem, evaluate the integral ?? =? ? ?? ?? ?????? ?? ??????? (2013 : 15 Marks) Solution: Using trigonometry, sin 4 ??? ?=[ 1 2 (1-cos?2?? ] 2 = 1 4 (1+cos 2 ?2?? -2cos?2?? ) ?= 1 8 [2+(1+cos?4?? )-2cos?2?? ]= 1 8 [cos?4?? -2cos?2?? +3] ?? ?=? ? ?? 0 ?sin 4 ??????? = 1 2 ? ? 2?? 0 ?sin 4 ??????? ?= 1 2 ? ? 2?? 0 ? 1 8 [cos?4?? -2cos?2?? +3]???? ?= 1 16 ? ? 2?? 0 ?[cos?4?? -2cos?2?? +3]???? ?= Real part of 1 16 ? ? 2?? 0 ?(?? ??4?? -2?? ??2?? +3)???? Let ?? =?? ???? ,???????????????????????????? =???? ???? ???? ????? = ???? ???? . = R.P. of 1 16 ??? ?? (?? 4 -2?? 2 +3)???? ???? where ?? is the unit circle. ??? ?? ?? 4 -2?? 2 +3 ?? ???? =2???? Sum of Residue of ?? (?? ) where ??????????????????????????????????????????????????????????? (?? )= ?? 4 -2?? 2 +3 ?? Now ?? (?? ) has one pole at ?? =0 inside unit circle. Residue at ?? =0=lim ?? ?0 ????? (?? ) ????????????????????????????????????????????????????????????????????=3 ?? ???? (?? )=6???? ??????????????????????????????????????? 1 16?? ?? ?? ?? (?? )= 3 8 ?? ???????????????????????????????????????? 0 ?? ?sin 4 ??????? = R.p 3 8 ?? = 3?? 8 5.2 Evaluate the integral ? ?? ?? ? ???? (?? + ?? ?? ?????? ??? ) ?? using residues. (2014 : 20 Marks) Solution: Let ?? ?=? ? ?? 0 ? ???? (1+ 1 2 cos??? ) 2 ?= 1 2 ? ? 2?? 0 ? 4???? (2+cos??? ) 2 ?=? ? 2?? 0 ? 2???? (2+cos??? ) 2 . Let the contour ' ?? ' be the unit circle |?? |=?? with centre at the origin. Let ?? =?? ???? then cos??? ?= 1 2 (?? + 1 ?? ) ???? ?=???? ???? ???? ???? ?= ???? ???? ?? ?=? 0 2?? ? 2???? (2+cos??? ) 2 =? 0 2?? ? 2???? ???? (2+ ?? 2 +1 2?? ) 2 ?= 1 ?? ? 0 2?? ? 8?? (?? 2 +4?? +1) 2 ???? ????????????????????????????????????????????????? ?= 8 ?? ? ?? ? ?? (?? 2 +4?? +1) 2 ???? ?= 8 ?? ? ?? ??? (?? )???? where ?? (?? )= ?? (?? 2 +4?? +1) 2 (??) Now the poles of ?? (?? ) are given by Page 3 Edurev123 5. Cauchy's Residue Theorem 5.1 Using Cauchy's residue theorem, evaluate the integral ?? =? ? ?? ?? ?????? ?? ??????? (2013 : 15 Marks) Solution: Using trigonometry, sin 4 ??? ?=[ 1 2 (1-cos?2?? ] 2 = 1 4 (1+cos 2 ?2?? -2cos?2?? ) ?= 1 8 [2+(1+cos?4?? )-2cos?2?? ]= 1 8 [cos?4?? -2cos?2?? +3] ?? ?=? ? ?? 0 ?sin 4 ??????? = 1 2 ? ? 2?? 0 ?sin 4 ??????? ?= 1 2 ? ? 2?? 0 ? 1 8 [cos?4?? -2cos?2?? +3]???? ?= 1 16 ? ? 2?? 0 ?[cos?4?? -2cos?2?? +3]???? ?= Real part of 1 16 ? ? 2?? 0 ?(?? ??4?? -2?? ??2?? +3)???? Let ?? =?? ???? ,???????????????????????????? =???? ???? ???? ????? = ???? ???? . = R.P. of 1 16 ??? ?? (?? 4 -2?? 2 +3)???? ???? where ?? is the unit circle. ??? ?? ?? 4 -2?? 2 +3 ?? ???? =2???? Sum of Residue of ?? (?? ) where ??????????????????????????????????????????????????????????? (?? )= ?? 4 -2?? 2 +3 ?? Now ?? (?? ) has one pole at ?? =0 inside unit circle. Residue at ?? =0=lim ?? ?0 ????? (?? ) ????????????????????????????????????????????????????????????????????=3 ?? ???? (?? )=6???? ??????????????????????????????????????? 1 16?? ?? ?? ?? (?? )= 3 8 ?? ???????????????????????????????????????? 0 ?? ?sin 4 ??????? = R.p 3 8 ?? = 3?? 8 5.2 Evaluate the integral ? ?? ?? ? ???? (?? + ?? ?? ?????? ??? ) ?? using residues. (2014 : 20 Marks) Solution: Let ?? ?=? ? ?? 0 ? ???? (1+ 1 2 cos??? ) 2 ?= 1 2 ? ? 2?? 0 ? 4???? (2+cos??? ) 2 ?=? ? 2?? 0 ? 2???? (2+cos??? ) 2 . Let the contour ' ?? ' be the unit circle |?? |=?? with centre at the origin. Let ?? =?? ???? then cos??? ?= 1 2 (?? + 1 ?? ) ???? ?=???? ???? ???? ???? ?= ???? ???? ?? ?=? 0 2?? ? 2???? (2+cos??? ) 2 =? 0 2?? ? 2???? ???? (2+ ?? 2 +1 2?? ) 2 ?= 1 ?? ? 0 2?? ? 8?? (?? 2 +4?? +1) 2 ???? ????????????????????????????????????????????????? ?= 8 ?? ? ?? ? ?? (?? 2 +4?? +1) 2 ???? ?= 8 ?? ? ?? ??? (?? )???? where ?? (?? )= ?? (?? 2 +4?? +1) 2 (??) Now the poles of ?? (?? ) are given by (?? 2 +4?? +1) 2 =0??? = -4±v16-4 2 = -4±v12 2 =-2±v3 (twice) ??? (?? ) has poles of order at ?? =-2±v3 (twice) Let ?? =-2+v3,?? =-2-v3 Clearly |?? |>1 Since |???? |=1?|?? |<1 Hence, the ?????? pole inside ?? is ?? =?? of order 2 . ???? ?? ??? (?? )???? ?=?? ?????? (?? 2 +4?? +1) 2 ?=2???? ( residue at ?? =?? ) Now the residue at ?? =?? is lim ?? ??? ? ?? ???? (?? -?? ) 2 ?? (?? 2 +4?? +1) 2 =lim ?? ??? ? ?? ???? ?? (?? -?? ) 2 =lim ?? ??? ? -(?? +?? ) (?? -?? ) 3 = -(?? +?? ) (?? -?? ) 3 = -(-4) (2v3) 3 = (4) 8(3v3) = 1 6v3 ??????????????????????????????????????? ?? ??? (?? )???? =2???? ( 1 6v3 )= 2???? 6v3 = v3?? 3v3 ?? from (i) ?????????????????????????????? ? 2?? 0 ? 2???? (2+cos??? ) 2 = 8 ?? ( ???? 3v3 )= 8?? 3v3 ??????????????????????????????????????????????????????????????? =? ? ?? 0 ? ???? (1+ cos??? 2 ) 2 = 8?? 3v3 5.3 State Cauchy's Residue theorem. Using it, evaluate the integral ? ?? ? ?? ?? +?? ?? (?? +?? )(?? -?? ) ?? ???? ·{?? :|?? |=?? } (2015 : 15 Marks) Page 4 Edurev123 5. Cauchy's Residue Theorem 5.1 Using Cauchy's residue theorem, evaluate the integral ?? =? ? ?? ?? ?????? ?? ??????? (2013 : 15 Marks) Solution: Using trigonometry, sin 4 ??? ?=[ 1 2 (1-cos?2?? ] 2 = 1 4 (1+cos 2 ?2?? -2cos?2?? ) ?= 1 8 [2+(1+cos?4?? )-2cos?2?? ]= 1 8 [cos?4?? -2cos?2?? +3] ?? ?=? ? ?? 0 ?sin 4 ??????? = 1 2 ? ? 2?? 0 ?sin 4 ??????? ?= 1 2 ? ? 2?? 0 ? 1 8 [cos?4?? -2cos?2?? +3]???? ?= 1 16 ? ? 2?? 0 ?[cos?4?? -2cos?2?? +3]???? ?= Real part of 1 16 ? ? 2?? 0 ?(?? ??4?? -2?? ??2?? +3)???? Let ?? =?? ???? ,???????????????????????????? =???? ???? ???? ????? = ???? ???? . = R.P. of 1 16 ??? ?? (?? 4 -2?? 2 +3)???? ???? where ?? is the unit circle. ??? ?? ?? 4 -2?? 2 +3 ?? ???? =2???? Sum of Residue of ?? (?? ) where ??????????????????????????????????????????????????????????? (?? )= ?? 4 -2?? 2 +3 ?? Now ?? (?? ) has one pole at ?? =0 inside unit circle. Residue at ?? =0=lim ?? ?0 ????? (?? ) ????????????????????????????????????????????????????????????????????=3 ?? ???? (?? )=6???? ??????????????????????????????????????? 1 16?? ?? ?? ?? (?? )= 3 8 ?? ???????????????????????????????????????? 0 ?? ?sin 4 ??????? = R.p 3 8 ?? = 3?? 8 5.2 Evaluate the integral ? ?? ?? ? ???? (?? + ?? ?? ?????? ??? ) ?? using residues. (2014 : 20 Marks) Solution: Let ?? ?=? ? ?? 0 ? ???? (1+ 1 2 cos??? ) 2 ?= 1 2 ? ? 2?? 0 ? 4???? (2+cos??? ) 2 ?=? ? 2?? 0 ? 2???? (2+cos??? ) 2 . Let the contour ' ?? ' be the unit circle |?? |=?? with centre at the origin. Let ?? =?? ???? then cos??? ?= 1 2 (?? + 1 ?? ) ???? ?=???? ???? ???? ???? ?= ???? ???? ?? ?=? 0 2?? ? 2???? (2+cos??? ) 2 =? 0 2?? ? 2???? ???? (2+ ?? 2 +1 2?? ) 2 ?= 1 ?? ? 0 2?? ? 8?? (?? 2 +4?? +1) 2 ???? ????????????????????????????????????????????????? ?= 8 ?? ? ?? ? ?? (?? 2 +4?? +1) 2 ???? ?= 8 ?? ? ?? ??? (?? )???? where ?? (?? )= ?? (?? 2 +4?? +1) 2 (??) Now the poles of ?? (?? ) are given by (?? 2 +4?? +1) 2 =0??? = -4±v16-4 2 = -4±v12 2 =-2±v3 (twice) ??? (?? ) has poles of order at ?? =-2±v3 (twice) Let ?? =-2+v3,?? =-2-v3 Clearly |?? |>1 Since |???? |=1?|?? |<1 Hence, the ?????? pole inside ?? is ?? =?? of order 2 . ???? ?? ??? (?? )???? ?=?? ?????? (?? 2 +4?? +1) 2 ?=2???? ( residue at ?? =?? ) Now the residue at ?? =?? is lim ?? ??? ? ?? ???? (?? -?? ) 2 ?? (?? 2 +4?? +1) 2 =lim ?? ??? ? ?? ???? ?? (?? -?? ) 2 =lim ?? ??? ? -(?? +?? ) (?? -?? ) 3 = -(?? +?? ) (?? -?? ) 3 = -(-4) (2v3) 3 = (4) 8(3v3) = 1 6v3 ??????????????????????????????????????? ?? ??? (?? )???? =2???? ( 1 6v3 )= 2???? 6v3 = v3?? 3v3 ?? from (i) ?????????????????????????????? ? 2?? 0 ? 2???? (2+cos??? ) 2 = 8 ?? ( ???? 3v3 )= 8?? 3v3 ??????????????????????????????????????????????????????????????? =? ? ?? 0 ? ???? (1+ cos??? 2 ) 2 = 8?? 3v3 5.3 State Cauchy's Residue theorem. Using it, evaluate the integral ? ?? ? ?? ?? +?? ?? (?? +?? )(?? -?? ) ?? ???? ·{?? :|?? |=?? } (2015 : 15 Marks) Solution: Cauchy's Residue theorem states that in a given region, integral of a function along the closed curve is equal to 2???? times sum of its residues. Given, ?? ?=?? ?? ? ?? 2 +1 ?? (?? +1)(?? -??) 2 ???? ,?? :|?? |=2 ?=?? ?? ??? (?? )???? In the given region, |?? |=2,?? (?? ) is analytic everywhere except at ?? =0,-1,?? . ?? =0 is a pole of order 1 . ?? =-1 is a pole of order 1 . ?? =?? is a pole of order 2 . Now, Residue at ?? =0 : lim ?? ?0 ? ?? (?? 2 +1) ?? (?? +1)(?? -??) 2 ?= 1+1 1(-??) 2 = 2 (-1) ?=-2 Residue at ?? =-1 : lim ?? ?-1 ? (?? +1)(?? 2 +1) ?? (?? +1)(?? -1) 2 ?= 1+?? -1 (-1)(-1-??) 2 = -(1+?? -1 ) 1-1+2?? ?= (1+?? -1 ) 2 ?? Residue at ?? =?? : Page 5 Edurev123 5. Cauchy's Residue Theorem 5.1 Using Cauchy's residue theorem, evaluate the integral ?? =? ? ?? ?? ?????? ?? ??????? (2013 : 15 Marks) Solution: Using trigonometry, sin 4 ??? ?=[ 1 2 (1-cos?2?? ] 2 = 1 4 (1+cos 2 ?2?? -2cos?2?? ) ?= 1 8 [2+(1+cos?4?? )-2cos?2?? ]= 1 8 [cos?4?? -2cos?2?? +3] ?? ?=? ? ?? 0 ?sin 4 ??????? = 1 2 ? ? 2?? 0 ?sin 4 ??????? ?= 1 2 ? ? 2?? 0 ? 1 8 [cos?4?? -2cos?2?? +3]???? ?= 1 16 ? ? 2?? 0 ?[cos?4?? -2cos?2?? +3]???? ?= Real part of 1 16 ? ? 2?? 0 ?(?? ??4?? -2?? ??2?? +3)???? Let ?? =?? ???? ,???????????????????????????? =???? ???? ???? ????? = ???? ???? . = R.P. of 1 16 ??? ?? (?? 4 -2?? 2 +3)???? ???? where ?? is the unit circle. ??? ?? ?? 4 -2?? 2 +3 ?? ???? =2???? Sum of Residue of ?? (?? ) where ??????????????????????????????????????????????????????????? (?? )= ?? 4 -2?? 2 +3 ?? Now ?? (?? ) has one pole at ?? =0 inside unit circle. Residue at ?? =0=lim ?? ?0 ????? (?? ) ????????????????????????????????????????????????????????????????????=3 ?? ???? (?? )=6???? ??????????????????????????????????????? 1 16?? ?? ?? ?? (?? )= 3 8 ?? ???????????????????????????????????????? 0 ?? ?sin 4 ??????? = R.p 3 8 ?? = 3?? 8 5.2 Evaluate the integral ? ?? ?? ? ???? (?? + ?? ?? ?????? ??? ) ?? using residues. (2014 : 20 Marks) Solution: Let ?? ?=? ? ?? 0 ? ???? (1+ 1 2 cos??? ) 2 ?= 1 2 ? ? 2?? 0 ? 4???? (2+cos??? ) 2 ?=? ? 2?? 0 ? 2???? (2+cos??? ) 2 . Let the contour ' ?? ' be the unit circle |?? |=?? with centre at the origin. Let ?? =?? ???? then cos??? ?= 1 2 (?? + 1 ?? ) ???? ?=???? ???? ???? ???? ?= ???? ???? ?? ?=? 0 2?? ? 2???? (2+cos??? ) 2 =? 0 2?? ? 2???? ???? (2+ ?? 2 +1 2?? ) 2 ?= 1 ?? ? 0 2?? ? 8?? (?? 2 +4?? +1) 2 ???? ????????????????????????????????????????????????? ?= 8 ?? ? ?? ? ?? (?? 2 +4?? +1) 2 ???? ?= 8 ?? ? ?? ??? (?? )???? where ?? (?? )= ?? (?? 2 +4?? +1) 2 (??) Now the poles of ?? (?? ) are given by (?? 2 +4?? +1) 2 =0??? = -4±v16-4 2 = -4±v12 2 =-2±v3 (twice) ??? (?? ) has poles of order at ?? =-2±v3 (twice) Let ?? =-2+v3,?? =-2-v3 Clearly |?? |>1 Since |???? |=1?|?? |<1 Hence, the ?????? pole inside ?? is ?? =?? of order 2 . ???? ?? ??? (?? )???? ?=?? ?????? (?? 2 +4?? +1) 2 ?=2???? ( residue at ?? =?? ) Now the residue at ?? =?? is lim ?? ??? ? ?? ???? (?? -?? ) 2 ?? (?? 2 +4?? +1) 2 =lim ?? ??? ? ?? ???? ?? (?? -?? ) 2 =lim ?? ??? ? -(?? +?? ) (?? -?? ) 3 = -(?? +?? ) (?? -?? ) 3 = -(-4) (2v3) 3 = (4) 8(3v3) = 1 6v3 ??????????????????????????????????????? ?? ??? (?? )???? =2???? ( 1 6v3 )= 2???? 6v3 = v3?? 3v3 ?? from (i) ?????????????????????????????? ? 2?? 0 ? 2???? (2+cos??? ) 2 = 8 ?? ( ???? 3v3 )= 8?? 3v3 ??????????????????????????????????????????????????????????????? =? ? ?? 0 ? ???? (1+ cos??? 2 ) 2 = 8?? 3v3 5.3 State Cauchy's Residue theorem. Using it, evaluate the integral ? ?? ? ?? ?? +?? ?? (?? +?? )(?? -?? ) ?? ???? ·{?? :|?? |=?? } (2015 : 15 Marks) Solution: Cauchy's Residue theorem states that in a given region, integral of a function along the closed curve is equal to 2???? times sum of its residues. Given, ?? ?=?? ?? ? ?? 2 +1 ?? (?? +1)(?? -??) 2 ???? ,?? :|?? |=2 ?=?? ?? ??? (?? )???? In the given region, |?? |=2,?? (?? ) is analytic everywhere except at ?? =0,-1,?? . ?? =0 is a pole of order 1 . ?? =-1 is a pole of order 1 . ?? =?? is a pole of order 2 . Now, Residue at ?? =0 : lim ?? ?0 ? ?? (?? 2 +1) ?? (?? +1)(?? -??) 2 ?= 1+1 1(-??) 2 = 2 (-1) ?=-2 Residue at ?? =-1 : lim ?? ?-1 ? (?? +1)(?? 2 +1) ?? (?? +1)(?? -1) 2 ?= 1+?? -1 (-1)(-1-??) 2 = -(1+?? -1 ) 1-1+2?? ?= (1+?? -1 ) 2 ?? Residue at ?? =?? : lim ?? ??? ? ?? ???? (?? -1) 2 ?? 2 +1 ?? (?? +1)(?? -1) 2 ?=lim ?? ??? ? ?? ???? · ?? 2 +1 ?? (?? +1) ?=lim ?? ??? ?{ -(?? ?? +1) ?? 2 (?? +1) - (?? ?? +1) ?? (?? +1) 2 + ?? ?? ?? (?? +1) } ?= +(1+?? ?? ) (+1)(1+??) - (1+?? ?? ) ??(1+??) 2 + ?? ?? ??(?? +1) ?= 1+?? ?? 1+?? - 1+?? ?? 2 + ?? ?? ??(?? +1) ?= 1-?? 2 + 1+?? ?? 2 = 2-?? +?? ?? 2 ?? ?? ??? (?? )???? ?=2???? ( sum of residues) ?=2???? (-2+ (1+?? -1 )?? 2 + 2-?? +?? ?? 2 ) ?=2???? (-2+ ?? +???? -1 +2-?? +?? ?? 2 ) ?? ?? ??? (?? )???? ?=???? (?? ?? +???? -1 +2-4) ?=???? (?? ?? + ?? ?? -2) ??=???? (?? ?? + ?? ?? -2) 5.4 Show by applying residue theorem that ? ? 8 ?? ???? (?? ?? +?? ?? ) ?? = ?? ?? ?? ?? ,??? >?? (2018.: 15 Marks) Solution: Consider ? -?? ?? ? ???? (?? 2 +?? 2 ) 2 +? ?? ? ???? (?? 2 +?? 2 ) 2 Now, ? ? ?? -?? ???? (?? 2 +?? 2 ) 2 =? ? ?? ?? ???? (?? +???? ) 2 (?? -???? ) 2Read More
387 videos|203 docs
|