All Exams  >   ACT  >   Mathematics for ACT  >   All Questions

All questions of Trigonometry for ACT Exam

If Cos x – Sin x = √2 Sin x, find the value of Cos x + Sin x:
  • a)
    √2 Cos x
  • b)
    √2 Cosec x
  • c)
    √2 Sec x
  • d)
    √2 Sin x Cos x
Correct answer is option 'A'. Can you explain this answer?

Avinash Sharma answered
Cos x – Sin x = √2 Sin x
⇒ Cos x = Sin x + √2 Sin x



⇒ Sin x = (√2 - 1) Cos x
⇒ Sin x = √2 Cos x - Cos x
⇒ Sin x + Cos x = √2 Cos x

A right angled triangle has a height ‘p’, base ‘b’ and hypotenuse ‘h’. Which of the following value can h2 not take, given that p and b are positive integers?
  • a)
    74
  • b)
    52
  • c)
    13
  • d)
    23
Correct answer is option 'D'. Can you explain this answer?

Imk Pathshala answered
We know that,
h2 = p2 + b2 Given, p and b are positive integer, so h2 will be sum of two perfect squares. We see
a) 72 + 52 = 74 
b) 62 + 42 = 52
c) 32 + 22 = 13
d) Can’t be expressed as a sum of two perfect squares
The question is "Which of the following value can h2 not take, given that p and b are positive integers? "
Hence, the answer is 23

If tan θ + cot θ = 2, then what is the value of tan100 θ + cot100 θ?
  • a)
    1
  • b)
    3
  • c)
    2
  • d)
    None of the above
Correct answer is option 'C'. Can you explain this answer?

Ayesha Joshi answered
Given tan θ + cot θ = 2
Put θ = 450, above equation will satisfy as,
1 + 1 = 2
So, θ = 450,
= tan100 450 + cot100 450
= 1100 + 1100
= 2

What will be the value of 2cos2 θ - 1, if cos4 θ - sin4 θ = 2/3?
  • a)
    1
  • b)
    2
  • c)
    3/2
  • d)
    2/3
Correct answer is option 'D'. Can you explain this answer?

Joshua Pope answered
It appears that the expression "2cos2" is incomplete and does not make mathematical sense. In order to provide an answer, please provide the full expression or specify what you are referring to.

Which of the following is the correct value of cos2 550 + cos2 350 + sin2 650 + sin2 250?
  • a)
    0
  • b)
    3
  • c)
    2
  • d)
    None of the above
Correct answer is option 'C'. Can you explain this answer?

Ayesha Joshi answered
cos2 550 + cos2 350 + sin2 650 + sin2 250
⇒ cos2 (900 - 350) + cos2 350 + sin2 650 + sin2 (900 - 650)
⇒ (sin2 350 + cos2 350) + (sin2 650 + cos2 650)
⇒ 1 + 1
= 2

If the value of sin A + cosec A = 2, then what is the value of sin7 A + cosec7 A?
  • a)
    1
  • b)
    0
  • c)
    2
  • d)
    3
Correct answer is option 'C'. Can you explain this answer?

Ayesha Joshi answered
It is given that sin A + cosec A = 2 ……(i)
On putting A = 900, then above condition will satisfy
sin 900 + cosec 900 = 2
or, 1 + 1 = 2 (as the equation satisfies, so, A = 900)
Now, sin7 A + cosec7 A = ?
⇒ sin7 900 + cosec7 900
⇒ 17 + 17
= 2

Which of the following is the correct value of (3 / 1+tan2 θ) + 2 sin2 θ + (1 / 1+cot2 θ)?
  • a)
    3
  • b)
    9
  • c)
    6
  • d)
    None of the above
Correct answer is option 'A'. Can you explain this answer?

Ayesha Joshi answered
(3 / 1+tan2 θ) + 2 sin2 θ + (1 / 1+cot2 θ) = ?
According to the trigonometric identities, the given equation can be written as -
= 3/sec2 θ + 2 sin2 θ + 1/cosec2 θ
= 3cos2 θ + 2 sin2 θ + sin2 θ
= 3cos2 θ + 3sin2 θ
= 3(cos2 θ + sin2 θ)
= 3

What will be the value of sec4 θ - tan4 θ, if sec2 θ + tan2 θ = 7/12?
  • a)
    1/2
  • b)
    7/12
  • c)
    1
  • d)
    2/3
Correct answer is option 'B'. Can you explain this answer?

Ayesha Joshi answered
Given sec2 θ + tan2 θ = 7/12
Now, here we can apply the formula -
a4 - b4 = (a2 - b2) (a2 + b2)
sec4 θ - tan4 θ = (sec2 θ - tan2 θ) (sec2 θ + tan2 θ)
= 1 x (sec2 θ + tan2 θ) {because 1 + tan2 θ = sec2 θ}
= 1 x 7/12
= 7/12

What will be the numerical value of (4 sec2 300 + cos2 600 - tan2 450) / (sin2 300 + cos2 300)?
  • a)
    55/12
  • b)
    45/12
  • c)
    1/12
  • d)
    None of the above
Correct answer is option 'A'. Can you explain this answer?

Ayesha Joshi answered
Given: (4 sec2 300 + cos2 600 - tan2 450) / (sin2 300 + cos2 300)
We have to put the numerical values,
= [4 (2/√3)2 + (½)2 - (1)2] / 1
⇒ sec2 A - 1 = 1 + 2 (sec2 B - 1)
⇒ sec2 A - 1 = 1 + 2 sec2 B - 2
⇒ sec2 A - 1 = 2 sec2 B - 1
⇒ 1/cos2 A = 2/cos2 B
⇒ cos2 B = 2cos2 A
⇒ or, cos B = √2 cos A
⇒ So, √2 cos A - cos B = 0

What is the value of tan3θ, If tan7θ.tan2θ = 1?
  • a)
    √3
  • b)
    1/√3
  • c)
    -1/√3
  • d)
    None of the above
Correct answer is option 'B'. Can you explain this answer?

Ayesha Joshi answered
Given tan7θ.tan2θ = 1
As we know, if tanA . tanB = 1 then, A + B = 900
So, 7θ + 3θ = 900
⇒ 9θ = 900
Or, θ = 100
Now, we have to find tan3θ
So, put θ = 100 in tan3θ, we will get
tan 300 = 1/√3

If sin (θ + 180) = cos 600, then what is the value of cos5θ, where 00 < θ < 900?
  • a)
    0
  • b)
    1/2
  • c)
    1
  • d)
    2
Correct answer is option 'B'. Can you explain this answer?

Ayesha Joshi answered
Given sin (θ + 180) = cos 600
sin (θ + 180) = cos (900 - 300)
So, sin (θ + 180) = sin300
Then, θ = 300 - 180
θ = 120
So, cos5θ = cos 5 x 120
= cos 600
= 1/2

If tan θ - cot θ = 0, what will be the value of sin θ + cos θ?
  • a)
    1
  • b)
    √2
  • c)
    1/√2
  • d)
    None of the above
Correct answer is option 'B'. Can you explain this answer?

Lucy Jenkins answered
Understanding the Equation
When tan θ - cot θ = 0, it implies that:
- tan θ = cot θ
We know that:
- tan θ = sin θ / cos θ
- cot θ = cos θ / sin θ
Setting these equal gives:
- sin θ / cos θ = cos θ / sin θ
Cross Multiplying
Cross multiplying leads to:
- sin² θ = cos² θ
This can be rewritten using the Pythagorean identity:
- sin² θ + cos² θ = 1
Finding the Values of sin θ and cos θ
From sin² θ = cos² θ, we can infer:
- sin² θ = 1/2
- cos² θ = 1/2
Thus, we have:
- sin θ = ± 1/√2
- cos θ = ± 1/√2
Calculating sin θ + cos θ
Now, we need to find:
- sin θ + cos θ = ± 1/√2 ± 1/√2
Considering both positive values, we get:
- sin θ + cos θ = 1/√2 + 1/√2 = 2/√2 = √2
Conclusion
Hence, the value of sin θ + cos θ is:
- √2
Thus, the correct answer is option 'B'.

Suppose cos θ + sin θ = √2 cos θ, then which of the following is the correct value of cos θ - sin θ?
  • a)
    √2 cos θ
  • b)
    √2 sin θ
  • c)
    -√2 cos θ
  • d)
    -√2 sin θ
Correct answer is option 'B'. Can you explain this answer?

Ayesha Joshi answered
It is given that, cos θ + sin θ = √2 cos θ …..(i)
On squaring both sides, we will get,
(cos θ + sin θ)2 = (√2 cos θ)2
⇒ cos2 θ + sin2 θ + 2 sin θ cos θ = 2 cos2 θ
Or, 2cos2 θ - cos2 θ - sin2 θ = 2 sinθ cosθ
⇒ cos2 θ - sin2 θ = 2 sin θ cos θ
⇒ (cos θ + sin θ) (cos θ - sin θ) = 2 sin θ cos θ
⇒ (√2 cos θ) (cos θ - sin θ) = 2 sin θ cos θ [from equation (i)]
⇒ (cos θ - sin θ) = 2 sinθ cosθ / √2 cos θ
= √2 sin θ

Which of the following is the correct value of (5/sec2 θ) + 3 sin2 θ + (2 / 1+cot2 θ)?
  • a)
    3
  • b)
    9
  • c)
    5
  • d)
    None of the above
Correct answer is option 'C'. Can you explain this answer?

Ayesha Joshi answered
(5 / sec2 θ) + 3 sin2 θ + (2 / 1+cot2 θ) = ?
According to the trigonometric identities, the given equation can be written as -
= 5cos2 θ + 3 sin2 θ + 2/cosec2 θ
= 5cos2 θ + 3 sin2 θ + 2sin2 θ
= 5cos2 θ + 5sin2 θ
= 5(cos2 θ + sin2 θ)
= 5

If the value of sin(θ + 300) is 3/√12, then what is the value of cos2 θ?
  • a)
    3/4
  • b)
    4/3
  • c)
    1/4
  • d)
    None of the above
Correct answer is option 'A'. Can you explain this answer?

Ayesha Joshi answered
Given sin (θ + 300) = 3/√12
It can be written as sin (θ + 300) = 3/2√3
Or, sin (θ + 300) = √3/2
⇒ sin (θ + 300) = sin 600
⇒ θ + 300 = 600
⇒ θ = 300
On putting θ = 300, in cos2 θ, we will get
cos2 300 = (√3/2)2
= 3/4

What is the value of (tan2 θ - sec2 θ)?
  • a)
    2
  • b)
    -1
  • c)
    1
  • d)
    None of the above
Correct answer is option 'B'. Can you explain this answer?

Orion Classes answered
(tan2 θ - sec2 θ)
= sin2 θ/cos2 θ - 1/cos2 θ
= (sin2 θ - 1) / cos2 θ
= - cos2 θ/cos2 θ
= -1

If the value of tan2 θ + tan4 θ = 1, what will be the value of cos2 θ + cos4 θ?
  • a)
    4
  • b)
    1
  • c)
    -2
  • d)
    -1
Correct answer is option 'B'. Can you explain this answer?

Ayesha Joshi answered
Given, tan2 θ + tan4 θ = 1 …. (i)
From equation (i),
tan2 θ ( 1 + tan2 θ ) = 1
tan2 θ ( sec2 θ ) = 1 [As according to the trigonometric identity, sec2 θ - tan2 θ = 1]
tan2 θ = 1/ sec2 θ
tan2 θ = cos2 θ ….(ii)
Now, cos2 θ + cos4 θ = ?
⇒ cos2 θ + (cos2)2 θ
⇒ tan2 θ + (tan2)2 θ
⇒ tan2 θ + tan4 θ
= 1 {from equation (i)}

Which of the following is the correct value of cot 100.cot 200.cot 600.cot 700.cot 800?
  • a)
    1/√3
  • b)
    √3
  • c)
    -1
  • d)
    1
Correct answer is option 'A'. Can you explain this answer?

Ayesha Joshi answered
Here, we can apply the formula -
cot A. cot B = 1 (when A + B = 900)
= (cot 200 . cot 700) x (cot 100 . cot 800) x cot 600
= 1 x 1 x 1/√3
= 1/√3
So, the correct value of cot 100.cot 200.cot 600.cot 700.cot 800 = 1/√3

Which of the following is the correct relation between A and B, if A = tan 110 . tan 290, and B = 2 cot 610 . cot 790?
  • a)
    A = B
  • b)
    A = -B
  • c)
    A = 2B
  • d)
    2A = B
Correct answer is option 'D'. Can you explain this answer?

Ayesha Joshi answered
Given A = tan 110 . tan 290, and B = 2 cot 610 . cot 790
A / B = tan 110 . tan 290 / 2 cot 610 . cot 790
= [tan 110 . tan 290] / [2 cot (900 - 290) . cot (900 - 110)]
= tan 110 . tan 290 / 2 tan 110 . tan 290
= 1/2
So, A/B = 1/2
Or, 2A = B

Find the value of :- (log sin 1° + log sin 2° ………..+ log sin 89°) + (log tan 1° + log tan 2° + ……… + log tan 89°) - (log cos 1° + log cos 2° + ……… + log cos 89°)
  • a)
    log √2/(1+√2)
  • b)
    -1
  • c)
    1
  • d)
    none of these
Correct answer is option 'D'. Can you explain this answer?

Writing the equation as :-

(log sin 1degree - log cos 89degree) + (log sin 2degree - log cos 88degree) + (log sin 3degree - log cos 87degree)… + log tan 1degree. log tan 89degree + log tan 2degree. log tan 88degree + ….

=) As cos(90−ϕ)=sinϕ:tan(90−ϕ)=cotϕ

=) (log sin 1degree - log sin 1degree) +(log sin 2degree  - log sin 2degree)+…..+ log tan 1degree cot 1degree  + log tan 2degree cot 2degree 

=) log 1 = 0

If the value of tan θ = 4/3, then which of the following is the correct value of (3 sin θ + 2 cos θ) / (3 sin θ - 2 cos θ) = ?
  • a)
    1
  • b)
    -3
  • c)
    2
  • d)
    3
Correct answer is option 'D'. Can you explain this answer?

Ayesha Joshi answered
It is given that, tan θ = 4/3
⇒ sin θ / cos θ = 4/3
So sin θ = 4, and cos θ = 3
Now, on putting the values of sin θ and cos θ in (3 sin θ + 2 cos θ) / (3 sin θ - 2 cos θ), we will get -
= 3x4 + 2x3/ 3x4 - 2x3
= 18/6
= 3

Two poles of equal height are standing opposite to each other on either side of a road which is 100 m wide. Find a point between them on road, angles of elevation of their tops are 30∘ and 60∘. The height of each pole in meter, is:
  • a)
     
    25√3​
  • b)
    20√3​
  • c)
    28√3​
  • d)
    30√3​
Correct answer is option 'A'. Can you explain this answer?

Rithika Datta answered
Let's assume the height of each pole is h meters.

We can form two right triangles with the given information:
In the first triangle:
angle of elevation = 30 degrees
opposite side = h
adjacent side = x (distance from the point between the poles to one of the poles)
We can use the tangent function: tan(30) = opposite/adjacent = h/x

In the second triangle:
angle of elevation = 60 degrees
opposite side = h
adjacent side = 100 - x (distance from the point between the poles to the other pole)
We can use the tangent function: tan(60) = opposite/adjacent = h/(100-x)

Now we can solve the two equations simultaneously to find the value of h.

From the first equation, we have:
tan(30) = h/x
1/sqrt(3) = h/x
x = sqrt(3)h

Substituting this value of x in the second equation, we have:
tan(60) = h/(100 - sqrt(3)h)
sqrt(3) = h/(100 - sqrt(3)h)
sqrt(3)(100 - sqrt(3)h) = h
300 - 3h = h^2
h^2 + 3h - 300 = 0

Using the quadratic formula, we find two possible values for h: h = 15 or h = -20. However, since the height cannot be negative, we discard the solution h = -20.

Therefore, the height of each pole is 15 meters.

What will be the value of 1 - 2sin2 θ, if cos4 θ - sin4 θ = 2/3?
  • a)
    1
  • b)
    2
  • c)
    3/2
  • d)
    2/3
Correct answer is option 'D'. Can you explain this answer?

Orion Classes answered
Given cos4 θ - sin4 θ = 2/3
Now, here we can apply the formula -
a4 - b4 = (a2 - b2) (a2 + b2)
So, (cos2 θ - sin2 θ) (cos2 θ + sin2 θ) = 2/3
So, 1 x (cos2 θ - sin2 θ) = 2/3 (because cos2 θ + sin2 θ = 1)
⇒ (1 - sin2 θ) - sin2 θ = 2/3
So, 1 - 2sin2 θ = 2/3

Evaluate:
sin2 5° + sin2 10° + sin2 15° + …… + sin2 85° + sin2 90°
  • a)
    7
  • b)
    8
  • c)
    9
  • d)
    19/2
Correct answer is option 'D'. Can you explain this answer?

Ayesha Joshi answered
Concept:
I. 
sin (90° - θ) = cos θ
II. sin2 θ + cos2 θ = 1
Calculation:
⇒ sin2 5° + sin2 10° + sin2 15° + …… + sin2 85° + sin2 90°
= (sin2 5° + sin2 85°) + (sin2 10° + sin2 80°) + ….. +(sin2 40° + sin2 50°)+ sin2 45° + sin2 90°
= (sin2 5° + sin2 (90° - 5°)) + (sin2 10° + sin2 (90° - 10°)) + ….. +(sin2 40° + sin2 (90° - 40°))+ sin2 45° + sin2 90°
As we know that, sin (90° - θ) = cos θ
= (sin2 5° + cos2 5°) + (sin2 10° + cos2 10°) + ….. +(sin2 40° + cos2 40°)+ sin2 45° + sin2 90°
As we know that, sin2 θ + cos2 θ = 1
= 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + (1/√2)2 + 1
= 9 + (1/2) = 19/2

If 2sinθ/cos3θ = tan 270° - tan θ, find the value of θ?
  • a)
    45°
  • b)
    135°
  • c)
    100°
  • d)
    90°
Correct answer is option 'D'. Can you explain this answer?

Orion Classes answered
Formula:
sin2θ = 2sinθcosθ 
sin(A - B) = sinAcosB - cosAsinB
Calculation:
Multiplying the left hand side with cosθ, we get-
sin2θ can also be written as sin(3θ - θ)
 
Applying sin(A-B) formula in the numerator part, we get-

⇒ tan3θ - tanθ 
Equating LHS with RHS, we get-
⇒ tan3θ - tanθ = tan 270° - tan θ
⇒ 3θ = 270° 
⇒ θ = 90°
∴ The value of θ is 90°

What is equal to?
  • a)
    sin θ - cos θ
  • b)
    sin θ + cos θ
  • c)
    2sin θ
  • d)
    2cos θ
Correct answer is option 'B'. Can you explain this answer?

Ayesha Joshi answered
Formula Used:

a2 - b2 = (a - b) (a + b)
Calculation:
We have to find the value of

tan θ & cot θ can be written as,

Hence,
(sin θ + cos θ)

If p = cosec θ – cot θ and q = (cosec θ + cot θ)-1 then which one of the following is correct?
  • a)
    p - q = 1
  • b)
    p = q
  • c)
    p + q = 1
  • d)
    p + q = 0
Correct answer is option 'B'. Can you explain this answer?

Ayesha Joshi answered
Concept:
cosec2 x – cot2 x = 1
Calculation:
Given: p = cosec θ – cot θ and q = (cosec θ + cot θ)-1
⇒ cosec θ + cot θ = 1/q
As we know that, cosec2 x – cot2 x = 1
⇒ (cosec θ + cot θ) × (cosec θ – cot θ) = 1
1/q × p = 1
⇒ p = q

If tan 48° tan 23° tan 42° tan 67° = tan(A + 30°) then A will be
  • a)
    30
  • b)
    15
  • c)
    45
  • d)
    60
Correct answer is option 'B'. Can you explain this answer?

Understanding the Problem
To solve the equation tan 48° tan 23° tan 42° tan 67° = tan(A + 30°), we need to simplify the left-hand side and explore relationships between the angles.
Using Angle Identities
1. Complementary Angles:
- We know that tan(90° - x) = cot(x).
- Therefore, tan 67° = cot 23° and tan 42° = cot 48°.
2. Rewriting the Expression:
- This gives us:
- tan 48° tan 23° tan 42° tan 67° = tan 48° cot 48° tan 23° cot 23°.
- Both tan 48° and cot 48° multiply to 1, and the same for tan 23° and cot 23°:
- Thus, tan 48° cot 48° = 1 and tan 23° cot 23° = 1.
3. Final Simplification:
- Therefore, tan 48° tan 23° tan 42° tan 67° = 1.
Equating Both Sides
Now we have 1 = tan(A + 30°).
Finding A
1. Using the tan Identity:
- The tangent of an angle is 1 when the angle is 45° (plus any integer multiple of 180°).
- Therefore, A + 30° = 45°.
2. Solving for A:
- Thus, A = 45° - 30° = 15°.
Conclusion
The value of A is 15°, confirming that the correct answer is option 'B'. This demonstrates how understanding complementary angles and the properties of tangent can simplify the problem effectively.

sec x + tan x = 2, find the value of cos x
  • a)
    1/3
  • b)
    3/4
  • c)
    1/2
  • d)
    4/5
Correct answer is option 'D'. Can you explain this answer?

Ayesha Joshi answered
Concept:
sec2 x - tan2 x = 1
Calculation:
Given sec x + tan x = 2     ....(i)
∵ sec2 x - tan2 x = 1
(sec x + tan x)(sec x - tan x) = 1
2(sec x - tan x) = 1
sec x - tan x = 1/2    ....(ii)
Adding the equation (i) and (ii)
2 sec x = 2 + 1/2
2/cos⁡x = 5/2
cos x = 4/5

If r cosθ = √3, and r sinθ = 1, what is the value of r2 tanθ?
  • a)
    4/√3
  • b)
    √3/4
  • c)
    √3
  • d)
    None of the above
Correct answer is option 'A'. Can you explain this answer?

Ayesha Joshi answered
Given r cosθ = √3, and r sinθ = 1
r cosθ / r sinθ = 1/√3
tanθ = tan 300
Or, θ = 300
On putting, θ = 300, we will get,
r sin 300 = 1
r x ½ = 1
or r =2
Now, r2 tanθ = ?
= (2)2 tan 300
= 4 x 1/√3
= 4/√3

What is the value of sin 0° + sin 10° + sin 20° + sin 30° + ⋯ + sin 360°?
  • a)
    -1
  • b)
    0
  • c)
    1
  • d)
    2
Correct answer is option 'B'. Can you explain this answer?

Ayesha Joshi answered
Formula used:
sin(360° - θ) = - sin θ
Calculation:
sin 0° + sin 10° + sin 20° + sin 30° + ⋯ + sin 360°
⇒ sin 0° + sin 10° + ....+ sin 180° + sin (360 - 170°) +  sin (360 - 160°) + .....+ sin (360 - 10°) + sin (360 - 0°)  
By using the  above formula
⇒ sin 0° + sin 10° + ......- sin 10° - sin 0° = 0
∴ sin 0° + sin 10° + sin 20° + sin 30° + ⋯ + sin 360° = 0

If sin θ + cos θ = 7/5, then sinθ cosθ is?
  • a)
    11/25
  • b)
    12/25
  • c)
    13/25
  • d)
    14/25
Correct answer is option 'B'. Can you explain this answer?

Orion Classes answered
Concept:
sin2 x + cos2 x = 1
Calculation:
Given: sin θ + cos θ = 7/5 
By, squaring both sides of the above equation we get,
⇒ (sin θ + cos θ)2 = 49/25
⇒ sin2 θ + cos2 θ + 2sin θ.cos θ = 49/25
As we know that, sin2 x + cos2 x = 1
⇒ 1 + 2sin θcos θ = 49/25
⇒ 2sin θcos θ = 24/25
∴ sin θcos θ = 12/25

If Tan4θ + Tan2θ = 1, then what is the value of Cos4θ + Cos2θ?
  • a)
    8
  • b)
    10
  • c)
    1
  • d)
    2
Correct answer is option 'C'. Can you explain this answer?

Ayesha Joshi answered
Given:
Tan4θ + Tan2θ = 1
Formula:
Sec2θ - Tan2θ = 1
Sin2θ + Cos2θ = 1
Calculation:
Tan4θ + Tan2θ = 1
⇒ Tan2θ (Tan2θ + 1) = 1
⇒ Tan2θ. Sec2θ = 1      {∵ sec2θ = 1 + tan2θ}
⇒ (sin2 θ/cos4 θ) = 1
⇒ 1 – cos2θ = cos4 θ      {∵ sin2 θ = 1 – cos2θ}
⇒ cos4 θ + cos2 θ = 1
∴ Then the value of cos4 θ + cos2 θ is 1.

sec4 x - tan4 x is equal to ?
  • a)
    1 + tan2 x
  • b)
    2tan2 x - 1
  • c)
    1 + 2tan2 x
  • d)
    None of the above
Correct answer is option 'C'. Can you explain this answer?

Orion Classes answered
Concept:
a2 - b2 = (a - b) (a + b)
sec2 x - tan2 x = 1
Calculation:
sec4 x - tan4 x
=(sec2 x - tan2 x) (sec2 x + tan2 x)          (∵ a2 - b2 = (a - b) (a + b))
= 1 × (1 + tan2 x + tan2 x) (∵ sec2 x - tan2 x = 1)
= 1 + 2tan2 x

If 3 - 4cotθ = cosecθ and 4 + 3cotθ = kcosecθ, find tha value of k
  • a)
    4√2
  • b)
    2√6
  • c)
    3√5
  • d)
    3√3
Correct answer is option 'B'. Can you explain this answer?

Ayesha Joshi answered
Formula:
1 + cot2θ = cosec2θ
Calculation:
Squaring both equations, we get-
⇒ (3 - 4cot)2 = (cosecθ)2
⇒ 9 + 16cot2θ - 2 × 3 × 4cotθ = cosec2θ
⇒ 9 + 16cot2θ - 24cotθ = cosec2θ (Eq 1)
Similarly, 
⇒ (4 + 3cotθ)2 = (kcosecθ)2
⇒ 16 + 9cot2θ + 2 × 4 × 3cotθ = k2cosec2θ 
⇒ 16 + 9cot2θ + 24cotθ = k2cosec2θ (Eq 2)
Adding Eq 1 and Eq 2, we get-
⇒  9 + 16cot2θ - 24cotθ + 16 + 9cot2θ + 24cotθ = cosec2θ + k2cosec2θ
⇒ 25 + 25cot2θ = cosec2θ (1 + k2)
⇒ 25 (1 + cot2θ) = cosec2θ (1 + k2)
Substituting the value of 1 + cot2θ as cosec2θ, we get-
⇒ 25 × cosec2θ = cosec2θ (1 + k2)
⇒ 25 = 1 + k2
∴ k2 = 24 or k = 2√6
The value of k is 2√6

A right angled triangle has a height ‘p’, base ‘b’ and hypotenuse ‘h’. Which of the following value can h2 not take, given that p and b are positive integers?
  • a)
    74
  • b)
    52
  • c)
    13
  • d)
    23
Correct answer is option 'D'. Can you explain this answer?

Mira Sharma answered
We know that,
h2 = p2 + b2 Given, p and b are positive integer, so h2 will be sum of two perfect squares.

We see 
a) 72 + 52 = 74
b) 62 + 42 = 52
c) 32 + 22 = 13
d) Can’t be expressed as a sum of two perfect squares
Therefore the answer is Option D.

If Cos x – Sin x = √2 Sin x, find the value of Cos x + Sin x:
  • a)
    √2 Cos x
  • b)
    √2 Cosec x
  • c)
    √2 Sec x
  • d)
    √2 Sin x Cos x
Correct answer is option 'A'. Can you explain this answer?

Mira Sharma answered
Cos x – Sin x = √2 Sin x 

=> Cos x = Sin x + √2 Sin x 
=> Cos x = Sin x + √2 Sin x 
=> Sin x = Cosx/(√2+1) * Cos x 
=> Sin x = (√2−1)/(√2−1) * 1/(√2+1) * Cos x
=> Sin x = (√2−1)/((√2)2−(1)2)* Cos x
=> Sin x = (√2 - 1) Cos x
=> Sin x = √2 Cos x – Cos x
=> Sin x + Cos x = √2 Cos x
Hence, the correct answer is Option A.

Chapter doubts & questions for Trigonometry - Mathematics for ACT 2025 is part of ACT exam preparation. The chapters have been prepared according to the ACT exam syllabus. The Chapter doubts & questions, notes, tests & MCQs are made for ACT 2025 Exam. Find important definitions, questions, notes, meanings, examples, exercises, MCQs and online tests here.

Chapter doubts & questions of Trigonometry - Mathematics for ACT in English & Hindi are available as part of ACT exam. Download more important topics, notes, lectures and mock test series for ACT Exam by signing up for free.

Mathematics for ACT

144 videos|100 docs|61 tests

Top Courses ACT

Signup to see your scores go up within 7 days!

Study with 1000+ FREE Docs, Videos & Tests
10M+ students study on EduRev