Find the maximum and minimum value of 8 cos A + 15 sin A + 15a)11&radi...
To find the maximum and minimum value of the expression 8 cos A + 15 sin A + 15, we can rewrite it as a single trigonometric function using the trigonometric identity:
a cos A + b sin A = √(a^2 + b^2) sin(A + α), where tan α = b/a.
In this case, a = 8, b = 15, and α = tan^(-1)(15/8).
Using these values, we can rewrite the expression as:
8 cos A + 15 sin A + 15 = √(8^2 + 15^2) sin(A + α) + 15
= √(64 + 225) sin(A + α) + 15
= √289 sin(A + α) + 15
= 17 sin(A + α) + 15
Since sin(A + α) has a maximum value of 1 and a minimum value of -1, the expression 17 sin(A + α) + 15 will have a maximum value of 17 + 15 = 32 and a minimum value of -17 + 15 = -2.
Therefore, the maximum value of 8 cos A + 15 sin A + 15 is 32, and the minimum value is -2.
Find the maximum and minimum value of 8 cos A + 15 sin A + 15a)11&radi...
(c) 32,-2.
maximum and minimum value of 8 COSA +15 SINA is + and- (under root { 8^2+15^2})