Shruti walks 5 m towards south. Now she walks 10 m after turning to he...
Solution:
To find the distance from the starting point, we need to find the net displacement of Shruti.
Let us assume that Shruti starts at point O. Then we can represent the given information as follows:
- Shruti walks 5 m towards south from O and reaches point A.
- Shruti turns left and walks 10 m from point A and reaches point B.
- Shruti turns right and walks 2 m from point B and reaches point C.
- Shruti turns right again and walks 4 m from point C and reaches point D.
- Shruti turns right again and walks 15 m from point D and reaches point E.
Now, we need to find the distance between points O and E, which is the net displacement of Shruti.
Using Pythagoras theorem, we can find the distance between any two points in a plane. Let us apply this theorem to find the distance between points O and E.
- Let the coordinates of point O be (0,0).
- The coordinates of point A are (0,-5) as Shruti walks 5 m towards south from O.
- The coordinates of point B are (-10,-5) as Shruti turns left and walks 10 m from point A.
- The coordinates of point C are (-10,-3) as Shruti turns right and walks 2 m from point B.
- The coordinates of point D are (-6,-3) as Shruti turns right again and walks 4 m from point C.
- The coordinates of point E are (9,-3) as Shruti turns right again and walks 15 m from point D.
Using the distance formula, we can find the distance between points O and E:
Distance = sqrt[(9-0)^2 + (-3-0)^2] = sqrt[81+9] = sqrt(90) ≈ 9.49
Therefore, the distance from the starting point is approximately 9.49 m, which is closest to option (c) 10 m.