UPSC Exam  >  UPSC Questions  >  Passage IIChemical pesticides lose their role... Start Learning for Free
Passage II

Chemical pesticides lose their role in sustainable agriculture if the pests evolve resistance. The evolution of the pesticide resistance is simply natural selection in action. It is almost certain to occur when vast numbers of a genetically variable population are killed. One or a few individuals may be unusually resistant (perhaps because they possess an enzyme that can detoxify the pesticide). If the pesticide is applied repeatedly, each successive generation of the pest will contain a larger proportion of resistant individuals. Pests typically have a high intrinsic rate of reproduction, and so a few individuals in one generation may give rise to hundreds or thousands in the next, and resistance spreads very rapidly in a population.
This problem was often ignored in the past, even though the first case of DDT (dichlorodiphenyltrichloroethane) resistance was reported as early as 1946. There is an exponential increase in the numbers of invertebrates that have evolved resistance and in the number pesticides against which resistance has evolved. Resistance has been recorded in every family of arthropod pests (including dipterans such as mosquitoes and house flies, as well as beetles, moths, wasps, fleas, lice and mites) as well as in weeds and plant pathogens. Take the Alabama leaf worm, a moth pest of cotton, as an example. It has developed resistance in one or more regions of the world to aldrin, DDT, dieldrin, endrin, lindane and toxaphene.
If chemical pesticides brought nothing but problems, - if their use was intrinsically and acutely unsustainable – then they would already have fallen out of widespread use. This has not happened. Instead, their rate of production has increased rapidly. The ratio of cost to benefit for the individual agricultural producer has remained in favour of pesticide use. In the USA, insecticides have been estimated to benefit the agricultural products to the tune of around $5 for every $1 spent.
Moreover, in many poorer countries, the prospect of imminent mass starvation, or of an epidemic disease, are so frightening that the social and health costs of using pesticides have to be ignored. In general the use of pesticides is justified by objective measures such as 'lives saved', 'economic efficiency of food production' and 'total food produced'. In these very fundamental senses, their use may be described as sustainable. In practice, sustainability depends on continually developing new pesticides that keep at least one step ahead of the pests – pesticides that are less persistent, biodegradable and more accurately targeted at the pests.
Q. “The evolution of pesticide resistance is natural selection in action.” What does it actually imply?  
  • a)
    It is very natural for many organisms to have pesticide resistance.
  • b)
    Pesticide resistance among organisms is a universal phenomenon.
  • c)
    Some individuals in any given population show resistance after the application of pesticides
  • d)
    None of the statements a), b) and c) given above is correct.
Correct answer is option 'C'. Can you explain this answer?
Verified Answer
Passage IIChemical pesticides lose their role in sustainable agricultu...
Solution: c) Option (a) and (b) are incorrect as they are nowhere mentioned in the passage.Option (c) is correct because it follows the logic of evolution and natural selection.
View all questions of this test
Most Upvoted Answer
Passage IIChemical pesticides lose their role in sustainable agricultu...
Explanation:

The evolution of pesticide resistance is natural selection in action
- When vast numbers of a genetically variable population are killed by pesticides, some individuals may possess resistance.
- These resistant individuals pass on their genes to the next generation, leading to a larger proportion of resistant pests.
- This process is a form of natural selection, where the pesticide acts as a selection pressure favoring those with resistance.

Implication of the statement
- It implies that pesticide resistance is not a random occurrence but a result of natural selection in action.
- It highlights the rapid spread of resistance in pest populations due to their high reproductive rates.
- It emphasizes the importance of continually developing new pesticides to stay ahead of evolving pests.
Therefore, option C is correct as some individuals in a population show resistance after the application of pesticides, which is a result of natural selection in action.
Explore Courses for UPSC exam

Top Courses for UPSC

Passage IIChemical pesticides lose their role in sustainable agriculture if the pests evolve resistance. The evolution of the pesticide resistance is simply natural selection in action. It is almost certain to occur when vast numbers of a genetically variable population are killed. One or a few individuals may be unusually resistant (perhaps because they possess an enzyme that can detoxify the pesticide). If the pesticide is applied repeatedly, each successive generation of the pest will contain a larger proportion of resistant individuals. Pests typically have a high intrinsic rate of reproduction, and so a few individuals in one generation may give rise to hundreds or thousands in the next, and resistance spreads very rapidly in a population.This problem was often ignored in the past, even though the first case of DDT (dichlorodiphenyltrichloroethane) resistance was reported as early as 1946. There is an exponential increase in the numbers of invertebrates that have evolved resistance and in the number pesticides against which resistance has evolved. Resistance has been recorded in every family of arthropod pests (including dipterans such as mosquitoes and house flies, as well as beetles, moths, wasps, fleas, lice and mites) as well as in weeds and plant pathogens. Take the Alabama leaf worm, a moth pest of cotton, as an example. It has developed resistance in one or more regions of the world to aldrin, DDT, dieldrin, endrin, lindane and toxaphene.If chemical pesticides brought nothing but problems, - if their use was intrinsically and acutely unsustainable – then they would already have fallen out of widespread use. This has not happened. Instead, their rate of production has increased rapidly. The ratio of cost to benefit for the individual agricultural producer has remained in favour of pesticide use. In the USA, insecticides have been estimated to benefit the agricultural products to the tune of around $5 for every $1 spent.Moreover, in many poorer countries, the prospect of imminent mass starvation, or of an epidemic disease, are so frightening that the social and health costs of using pesticides have to be ignored. In general the use of pesticides is justified by objective measures such as 'lives saved', 'economic efficiency of food production' and 'total food produced'. In these very fundamental senses, their use may be described as sustainable. In practice, sustainability depends on continually developing new pesticides that keep at least one step ahead of the pests – pesticides that are less persistent, biodegradable and more accurately targeted at the pests.Q. “The evolution of pesticide resistance is natural selection in action.” What does it actually imply? a)It is very natural for many organisms to have pesticide resistance.b)Pesticide resistance among organisms is a universal phenomenon.c)Some individuals in any given population show resistance after the application of pesticidesd)None of the statements a), b) and c) given above is correct.Correct answer is option 'C'. Can you explain this answer?
Question Description
Passage IIChemical pesticides lose their role in sustainable agriculture if the pests evolve resistance. The evolution of the pesticide resistance is simply natural selection in action. It is almost certain to occur when vast numbers of a genetically variable population are killed. One or a few individuals may be unusually resistant (perhaps because they possess an enzyme that can detoxify the pesticide). If the pesticide is applied repeatedly, each successive generation of the pest will contain a larger proportion of resistant individuals. Pests typically have a high intrinsic rate of reproduction, and so a few individuals in one generation may give rise to hundreds or thousands in the next, and resistance spreads very rapidly in a population.This problem was often ignored in the past, even though the first case of DDT (dichlorodiphenyltrichloroethane) resistance was reported as early as 1946. There is an exponential increase in the numbers of invertebrates that have evolved resistance and in the number pesticides against which resistance has evolved. Resistance has been recorded in every family of arthropod pests (including dipterans such as mosquitoes and house flies, as well as beetles, moths, wasps, fleas, lice and mites) as well as in weeds and plant pathogens. Take the Alabama leaf worm, a moth pest of cotton, as an example. It has developed resistance in one or more regions of the world to aldrin, DDT, dieldrin, endrin, lindane and toxaphene.If chemical pesticides brought nothing but problems, - if their use was intrinsically and acutely unsustainable – then they would already have fallen out of widespread use. This has not happened. Instead, their rate of production has increased rapidly. The ratio of cost to benefit for the individual agricultural producer has remained in favour of pesticide use. In the USA, insecticides have been estimated to benefit the agricultural products to the tune of around $5 for every $1 spent.Moreover, in many poorer countries, the prospect of imminent mass starvation, or of an epidemic disease, are so frightening that the social and health costs of using pesticides have to be ignored. In general the use of pesticides is justified by objective measures such as 'lives saved', 'economic efficiency of food production' and 'total food produced'. In these very fundamental senses, their use may be described as sustainable. In practice, sustainability depends on continually developing new pesticides that keep at least one step ahead of the pests – pesticides that are less persistent, biodegradable and more accurately targeted at the pests.Q. “The evolution of pesticide resistance is natural selection in action.” What does it actually imply? a)It is very natural for many organisms to have pesticide resistance.b)Pesticide resistance among organisms is a universal phenomenon.c)Some individuals in any given population show resistance after the application of pesticidesd)None of the statements a), b) and c) given above is correct.Correct answer is option 'C'. Can you explain this answer? for UPSC 2024 is part of UPSC preparation. The Question and answers have been prepared according to the UPSC exam syllabus. Information about Passage IIChemical pesticides lose their role in sustainable agriculture if the pests evolve resistance. The evolution of the pesticide resistance is simply natural selection in action. It is almost certain to occur when vast numbers of a genetically variable population are killed. One or a few individuals may be unusually resistant (perhaps because they possess an enzyme that can detoxify the pesticide). If the pesticide is applied repeatedly, each successive generation of the pest will contain a larger proportion of resistant individuals. Pests typically have a high intrinsic rate of reproduction, and so a few individuals in one generation may give rise to hundreds or thousands in the next, and resistance spreads very rapidly in a population.This problem was often ignored in the past, even though the first case of DDT (dichlorodiphenyltrichloroethane) resistance was reported as early as 1946. There is an exponential increase in the numbers of invertebrates that have evolved resistance and in the number pesticides against which resistance has evolved. Resistance has been recorded in every family of arthropod pests (including dipterans such as mosquitoes and house flies, as well as beetles, moths, wasps, fleas, lice and mites) as well as in weeds and plant pathogens. Take the Alabama leaf worm, a moth pest of cotton, as an example. It has developed resistance in one or more regions of the world to aldrin, DDT, dieldrin, endrin, lindane and toxaphene.If chemical pesticides brought nothing but problems, - if their use was intrinsically and acutely unsustainable – then they would already have fallen out of widespread use. This has not happened. Instead, their rate of production has increased rapidly. The ratio of cost to benefit for the individual agricultural producer has remained in favour of pesticide use. In the USA, insecticides have been estimated to benefit the agricultural products to the tune of around $5 for every $1 spent.Moreover, in many poorer countries, the prospect of imminent mass starvation, or of an epidemic disease, are so frightening that the social and health costs of using pesticides have to be ignored. In general the use of pesticides is justified by objective measures such as 'lives saved', 'economic efficiency of food production' and 'total food produced'. In these very fundamental senses, their use may be described as sustainable. In practice, sustainability depends on continually developing new pesticides that keep at least one step ahead of the pests – pesticides that are less persistent, biodegradable and more accurately targeted at the pests.Q. “The evolution of pesticide resistance is natural selection in action.” What does it actually imply? a)It is very natural for many organisms to have pesticide resistance.b)Pesticide resistance among organisms is a universal phenomenon.c)Some individuals in any given population show resistance after the application of pesticidesd)None of the statements a), b) and c) given above is correct.Correct answer is option 'C'. Can you explain this answer? covers all topics & solutions for UPSC 2024 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for Passage IIChemical pesticides lose their role in sustainable agriculture if the pests evolve resistance. The evolution of the pesticide resistance is simply natural selection in action. It is almost certain to occur when vast numbers of a genetically variable population are killed. One or a few individuals may be unusually resistant (perhaps because they possess an enzyme that can detoxify the pesticide). If the pesticide is applied repeatedly, each successive generation of the pest will contain a larger proportion of resistant individuals. Pests typically have a high intrinsic rate of reproduction, and so a few individuals in one generation may give rise to hundreds or thousands in the next, and resistance spreads very rapidly in a population.This problem was often ignored in the past, even though the first case of DDT (dichlorodiphenyltrichloroethane) resistance was reported as early as 1946. There is an exponential increase in the numbers of invertebrates that have evolved resistance and in the number pesticides against which resistance has evolved. Resistance has been recorded in every family of arthropod pests (including dipterans such as mosquitoes and house flies, as well as beetles, moths, wasps, fleas, lice and mites) as well as in weeds and plant pathogens. Take the Alabama leaf worm, a moth pest of cotton, as an example. It has developed resistance in one or more regions of the world to aldrin, DDT, dieldrin, endrin, lindane and toxaphene.If chemical pesticides brought nothing but problems, - if their use was intrinsically and acutely unsustainable – then they would already have fallen out of widespread use. This has not happened. Instead, their rate of production has increased rapidly. The ratio of cost to benefit for the individual agricultural producer has remained in favour of pesticide use. In the USA, insecticides have been estimated to benefit the agricultural products to the tune of around $5 for every $1 spent.Moreover, in many poorer countries, the prospect of imminent mass starvation, or of an epidemic disease, are so frightening that the social and health costs of using pesticides have to be ignored. In general the use of pesticides is justified by objective measures such as 'lives saved', 'economic efficiency of food production' and 'total food produced'. In these very fundamental senses, their use may be described as sustainable. In practice, sustainability depends on continually developing new pesticides that keep at least one step ahead of the pests – pesticides that are less persistent, biodegradable and more accurately targeted at the pests.Q. “The evolution of pesticide resistance is natural selection in action.” What does it actually imply? a)It is very natural for many organisms to have pesticide resistance.b)Pesticide resistance among organisms is a universal phenomenon.c)Some individuals in any given population show resistance after the application of pesticidesd)None of the statements a), b) and c) given above is correct.Correct answer is option 'C'. Can you explain this answer?.
Solutions for Passage IIChemical pesticides lose their role in sustainable agriculture if the pests evolve resistance. The evolution of the pesticide resistance is simply natural selection in action. It is almost certain to occur when vast numbers of a genetically variable population are killed. One or a few individuals may be unusually resistant (perhaps because they possess an enzyme that can detoxify the pesticide). If the pesticide is applied repeatedly, each successive generation of the pest will contain a larger proportion of resistant individuals. Pests typically have a high intrinsic rate of reproduction, and so a few individuals in one generation may give rise to hundreds or thousands in the next, and resistance spreads very rapidly in a population.This problem was often ignored in the past, even though the first case of DDT (dichlorodiphenyltrichloroethane) resistance was reported as early as 1946. There is an exponential increase in the numbers of invertebrates that have evolved resistance and in the number pesticides against which resistance has evolved. Resistance has been recorded in every family of arthropod pests (including dipterans such as mosquitoes and house flies, as well as beetles, moths, wasps, fleas, lice and mites) as well as in weeds and plant pathogens. Take the Alabama leaf worm, a moth pest of cotton, as an example. It has developed resistance in one or more regions of the world to aldrin, DDT, dieldrin, endrin, lindane and toxaphene.If chemical pesticides brought nothing but problems, - if their use was intrinsically and acutely unsustainable – then they would already have fallen out of widespread use. This has not happened. Instead, their rate of production has increased rapidly. The ratio of cost to benefit for the individual agricultural producer has remained in favour of pesticide use. In the USA, insecticides have been estimated to benefit the agricultural products to the tune of around $5 for every $1 spent.Moreover, in many poorer countries, the prospect of imminent mass starvation, or of an epidemic disease, are so frightening that the social and health costs of using pesticides have to be ignored. In general the use of pesticides is justified by objective measures such as 'lives saved', 'economic efficiency of food production' and 'total food produced'. In these very fundamental senses, their use may be described as sustainable. In practice, sustainability depends on continually developing new pesticides that keep at least one step ahead of the pests – pesticides that are less persistent, biodegradable and more accurately targeted at the pests.Q. “The evolution of pesticide resistance is natural selection in action.” What does it actually imply? a)It is very natural for many organisms to have pesticide resistance.b)Pesticide resistance among organisms is a universal phenomenon.c)Some individuals in any given population show resistance after the application of pesticidesd)None of the statements a), b) and c) given above is correct.Correct answer is option 'C'. Can you explain this answer? in English & in Hindi are available as part of our courses for UPSC. Download more important topics, notes, lectures and mock test series for UPSC Exam by signing up for free.
Here you can find the meaning of Passage IIChemical pesticides lose their role in sustainable agriculture if the pests evolve resistance. The evolution of the pesticide resistance is simply natural selection in action. It is almost certain to occur when vast numbers of a genetically variable population are killed. One or a few individuals may be unusually resistant (perhaps because they possess an enzyme that can detoxify the pesticide). If the pesticide is applied repeatedly, each successive generation of the pest will contain a larger proportion of resistant individuals. Pests typically have a high intrinsic rate of reproduction, and so a few individuals in one generation may give rise to hundreds or thousands in the next, and resistance spreads very rapidly in a population.This problem was often ignored in the past, even though the first case of DDT (dichlorodiphenyltrichloroethane) resistance was reported as early as 1946. There is an exponential increase in the numbers of invertebrates that have evolved resistance and in the number pesticides against which resistance has evolved. Resistance has been recorded in every family of arthropod pests (including dipterans such as mosquitoes and house flies, as well as beetles, moths, wasps, fleas, lice and mites) as well as in weeds and plant pathogens. Take the Alabama leaf worm, a moth pest of cotton, as an example. It has developed resistance in one or more regions of the world to aldrin, DDT, dieldrin, endrin, lindane and toxaphene.If chemical pesticides brought nothing but problems, - if their use was intrinsically and acutely unsustainable – then they would already have fallen out of widespread use. This has not happened. Instead, their rate of production has increased rapidly. The ratio of cost to benefit for the individual agricultural producer has remained in favour of pesticide use. In the USA, insecticides have been estimated to benefit the agricultural products to the tune of around $5 for every $1 spent.Moreover, in many poorer countries, the prospect of imminent mass starvation, or of an epidemic disease, are so frightening that the social and health costs of using pesticides have to be ignored. In general the use of pesticides is justified by objective measures such as 'lives saved', 'economic efficiency of food production' and 'total food produced'. In these very fundamental senses, their use may be described as sustainable. In practice, sustainability depends on continually developing new pesticides that keep at least one step ahead of the pests – pesticides that are less persistent, biodegradable and more accurately targeted at the pests.Q. “The evolution of pesticide resistance is natural selection in action.” What does it actually imply? a)It is very natural for many organisms to have pesticide resistance.b)Pesticide resistance among organisms is a universal phenomenon.c)Some individuals in any given population show resistance after the application of pesticidesd)None of the statements a), b) and c) given above is correct.Correct answer is option 'C'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of Passage IIChemical pesticides lose their role in sustainable agriculture if the pests evolve resistance. The evolution of the pesticide resistance is simply natural selection in action. It is almost certain to occur when vast numbers of a genetically variable population are killed. One or a few individuals may be unusually resistant (perhaps because they possess an enzyme that can detoxify the pesticide). If the pesticide is applied repeatedly, each successive generation of the pest will contain a larger proportion of resistant individuals. Pests typically have a high intrinsic rate of reproduction, and so a few individuals in one generation may give rise to hundreds or thousands in the next, and resistance spreads very rapidly in a population.This problem was often ignored in the past, even though the first case of DDT (dichlorodiphenyltrichloroethane) resistance was reported as early as 1946. There is an exponential increase in the numbers of invertebrates that have evolved resistance and in the number pesticides against which resistance has evolved. Resistance has been recorded in every family of arthropod pests (including dipterans such as mosquitoes and house flies, as well as beetles, moths, wasps, fleas, lice and mites) as well as in weeds and plant pathogens. Take the Alabama leaf worm, a moth pest of cotton, as an example. It has developed resistance in one or more regions of the world to aldrin, DDT, dieldrin, endrin, lindane and toxaphene.If chemical pesticides brought nothing but problems, - if their use was intrinsically and acutely unsustainable – then they would already have fallen out of widespread use. This has not happened. Instead, their rate of production has increased rapidly. The ratio of cost to benefit for the individual agricultural producer has remained in favour of pesticide use. In the USA, insecticides have been estimated to benefit the agricultural products to the tune of around $5 for every $1 spent.Moreover, in many poorer countries, the prospect of imminent mass starvation, or of an epidemic disease, are so frightening that the social and health costs of using pesticides have to be ignored. In general the use of pesticides is justified by objective measures such as 'lives saved', 'economic efficiency of food production' and 'total food produced'. In these very fundamental senses, their use may be described as sustainable. In practice, sustainability depends on continually developing new pesticides that keep at least one step ahead of the pests – pesticides that are less persistent, biodegradable and more accurately targeted at the pests.Q. “The evolution of pesticide resistance is natural selection in action.” What does it actually imply? a)It is very natural for many organisms to have pesticide resistance.b)Pesticide resistance among organisms is a universal phenomenon.c)Some individuals in any given population show resistance after the application of pesticidesd)None of the statements a), b) and c) given above is correct.Correct answer is option 'C'. Can you explain this answer?, a detailed solution for Passage IIChemical pesticides lose their role in sustainable agriculture if the pests evolve resistance. The evolution of the pesticide resistance is simply natural selection in action. It is almost certain to occur when vast numbers of a genetically variable population are killed. One or a few individuals may be unusually resistant (perhaps because they possess an enzyme that can detoxify the pesticide). If the pesticide is applied repeatedly, each successive generation of the pest will contain a larger proportion of resistant individuals. Pests typically have a high intrinsic rate of reproduction, and so a few individuals in one generation may give rise to hundreds or thousands in the next, and resistance spreads very rapidly in a population.This problem was often ignored in the past, even though the first case of DDT (dichlorodiphenyltrichloroethane) resistance was reported as early as 1946. There is an exponential increase in the numbers of invertebrates that have evolved resistance and in the number pesticides against which resistance has evolved. Resistance has been recorded in every family of arthropod pests (including dipterans such as mosquitoes and house flies, as well as beetles, moths, wasps, fleas, lice and mites) as well as in weeds and plant pathogens. Take the Alabama leaf worm, a moth pest of cotton, as an example. It has developed resistance in one or more regions of the world to aldrin, DDT, dieldrin, endrin, lindane and toxaphene.If chemical pesticides brought nothing but problems, - if their use was intrinsically and acutely unsustainable – then they would already have fallen out of widespread use. This has not happened. Instead, their rate of production has increased rapidly. The ratio of cost to benefit for the individual agricultural producer has remained in favour of pesticide use. In the USA, insecticides have been estimated to benefit the agricultural products to the tune of around $5 for every $1 spent.Moreover, in many poorer countries, the prospect of imminent mass starvation, or of an epidemic disease, are so frightening that the social and health costs of using pesticides have to be ignored. In general the use of pesticides is justified by objective measures such as 'lives saved', 'economic efficiency of food production' and 'total food produced'. In these very fundamental senses, their use may be described as sustainable. In practice, sustainability depends on continually developing new pesticides that keep at least one step ahead of the pests – pesticides that are less persistent, biodegradable and more accurately targeted at the pests.Q. “The evolution of pesticide resistance is natural selection in action.” What does it actually imply? a)It is very natural for many organisms to have pesticide resistance.b)Pesticide resistance among organisms is a universal phenomenon.c)Some individuals in any given population show resistance after the application of pesticidesd)None of the statements a), b) and c) given above is correct.Correct answer is option 'C'. Can you explain this answer? has been provided alongside types of Passage IIChemical pesticides lose their role in sustainable agriculture if the pests evolve resistance. The evolution of the pesticide resistance is simply natural selection in action. It is almost certain to occur when vast numbers of a genetically variable population are killed. One or a few individuals may be unusually resistant (perhaps because they possess an enzyme that can detoxify the pesticide). If the pesticide is applied repeatedly, each successive generation of the pest will contain a larger proportion of resistant individuals. Pests typically have a high intrinsic rate of reproduction, and so a few individuals in one generation may give rise to hundreds or thousands in the next, and resistance spreads very rapidly in a population.This problem was often ignored in the past, even though the first case of DDT (dichlorodiphenyltrichloroethane) resistance was reported as early as 1946. There is an exponential increase in the numbers of invertebrates that have evolved resistance and in the number pesticides against which resistance has evolved. Resistance has been recorded in every family of arthropod pests (including dipterans such as mosquitoes and house flies, as well as beetles, moths, wasps, fleas, lice and mites) as well as in weeds and plant pathogens. Take the Alabama leaf worm, a moth pest of cotton, as an example. It has developed resistance in one or more regions of the world to aldrin, DDT, dieldrin, endrin, lindane and toxaphene.If chemical pesticides brought nothing but problems, - if their use was intrinsically and acutely unsustainable – then they would already have fallen out of widespread use. This has not happened. Instead, their rate of production has increased rapidly. The ratio of cost to benefit for the individual agricultural producer has remained in favour of pesticide use. In the USA, insecticides have been estimated to benefit the agricultural products to the tune of around $5 for every $1 spent.Moreover, in many poorer countries, the prospect of imminent mass starvation, or of an epidemic disease, are so frightening that the social and health costs of using pesticides have to be ignored. In general the use of pesticides is justified by objective measures such as 'lives saved', 'economic efficiency of food production' and 'total food produced'. In these very fundamental senses, their use may be described as sustainable. In practice, sustainability depends on continually developing new pesticides that keep at least one step ahead of the pests – pesticides that are less persistent, biodegradable and more accurately targeted at the pests.Q. “The evolution of pesticide resistance is natural selection in action.” What does it actually imply? a)It is very natural for many organisms to have pesticide resistance.b)Pesticide resistance among organisms is a universal phenomenon.c)Some individuals in any given population show resistance after the application of pesticidesd)None of the statements a), b) and c) given above is correct.Correct answer is option 'C'. Can you explain this answer? theory, EduRev gives you an ample number of questions to practice Passage IIChemical pesticides lose their role in sustainable agriculture if the pests evolve resistance. The evolution of the pesticide resistance is simply natural selection in action. It is almost certain to occur when vast numbers of a genetically variable population are killed. One or a few individuals may be unusually resistant (perhaps because they possess an enzyme that can detoxify the pesticide). If the pesticide is applied repeatedly, each successive generation of the pest will contain a larger proportion of resistant individuals. Pests typically have a high intrinsic rate of reproduction, and so a few individuals in one generation may give rise to hundreds or thousands in the next, and resistance spreads very rapidly in a population.This problem was often ignored in the past, even though the first case of DDT (dichlorodiphenyltrichloroethane) resistance was reported as early as 1946. There is an exponential increase in the numbers of invertebrates that have evolved resistance and in the number pesticides against which resistance has evolved. Resistance has been recorded in every family of arthropod pests (including dipterans such as mosquitoes and house flies, as well as beetles, moths, wasps, fleas, lice and mites) as well as in weeds and plant pathogens. Take the Alabama leaf worm, a moth pest of cotton, as an example. It has developed resistance in one or more regions of the world to aldrin, DDT, dieldrin, endrin, lindane and toxaphene.If chemical pesticides brought nothing but problems, - if their use was intrinsically and acutely unsustainable – then they would already have fallen out of widespread use. This has not happened. Instead, their rate of production has increased rapidly. The ratio of cost to benefit for the individual agricultural producer has remained in favour of pesticide use. In the USA, insecticides have been estimated to benefit the agricultural products to the tune of around $5 for every $1 spent.Moreover, in many poorer countries, the prospect of imminent mass starvation, or of an epidemic disease, are so frightening that the social and health costs of using pesticides have to be ignored. In general the use of pesticides is justified by objective measures such as 'lives saved', 'economic efficiency of food production' and 'total food produced'. In these very fundamental senses, their use may be described as sustainable. In practice, sustainability depends on continually developing new pesticides that keep at least one step ahead of the pests – pesticides that are less persistent, biodegradable and more accurately targeted at the pests.Q. “The evolution of pesticide resistance is natural selection in action.” What does it actually imply? a)It is very natural for many organisms to have pesticide resistance.b)Pesticide resistance among organisms is a universal phenomenon.c)Some individuals in any given population show resistance after the application of pesticidesd)None of the statements a), b) and c) given above is correct.Correct answer is option 'C'. Can you explain this answer? tests, examples and also practice UPSC tests.
Explore Courses for UPSC exam

Top Courses for UPSC

Explore Courses
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev